Python数据分析 之时间序列基础】的更多相关文章

1. 时间序列基础 import numpy as np import pandas as pd np.random.seed(12345) import matplotlib.pyplot as plt plt.rc('figure', figsize=(10, 6)) PREVIOUS_MAX_ROWS = pd.options.display.max_rows pd.options.display.max_rows = 20 np.set_printoptions(precision=4,…
本节概要 - 数据类型 - 数据结构 - 数据的常用操作方法 数据类型 基础铺垫 定义 我们搞数据时,首先要告诉Python我们的数据类型是什么 数值型:直接写一个数字即可 逻辑型:True,False(首字母大写) 字符型:单引号.双引号.三引号 赋值 用等号给变量贴标签 变量-赋值的对象是变量 命名规则 命名规则 逻辑型(Logical) 布尔值:只有两种取值(0和1,True和False) 运算规则: 运算符 注释 规则 & 与 一个为假,结果为假 | 或 一个为真,结果为真 not 非…
在我来看,没有必要为了数据分析而去精通Python.我鼓励你使用IPython shell和Jupyter试验示例代码,并学习不同类型.函数和方法的文档.虽然我已尽力让本书内容循序渐进,但读者偶尔仍会碰到没有之前介绍过的内容. 本书大部分内容关注的是基于表格的分析和处理大规模数据集的数据准备工具.为了使用这些工具,必须首先将混乱的数据规整为整洁的表格(或结构化)形式.幸好,Python是一个理想的语言,可以快速整理数据.Python使用得越熟练,越容易准备新数据集以进行分析. 最好在IPytho…
随着大数据和人工智能的发展,目前Python语言的上升趋势比较明显,而且由于Python语言简单易学,所以不少初学者往往也会选择Python作为入门语言. Python语言目前是IT行业内应用最为广泛的编程语言之一,尤其是近几年来随着大数据和人工智能(机器学习.自然语言处理.计算机视觉等)的发展,Python也得到了越来越广泛的应用,另外Python在Web开发.后端开发和嵌入式开发领域也有广泛的应用. 小编推荐一个学Python的学习裙,九三七六六七 五零九,无论你是大牛还是小白,是想转行还是…
pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二维矩阵:DataFrame 三维面板数据:Panel 背景:为金融产品数据分析创建的,对时间序列支持非常好! 数据结构 导入pandas模块 import pandas as pd 读取csv文件,数据类型就是二维矩阵 DataFrame df = pd.read_csv('路径')type(df)…
一.配置启动IPython 打开cmd窗口,在dos界面下输入ipython,结果报错了!!! 出现这个问题是由于环境变量未配置(前提:已经安装了ipython),那么接下来配置环境变量 我的电脑→右键→属性→高级系统设置→环境变量→系统变量→path→添加Scripts径 我的路径为:C:\Users\Administrator\AppData\Local\Programs\Python\Python36\Scripts 重新启动dos窗口,输入ipython 二.格式化输出 下面分别使用Py…
重点方法 分组:groupby('列名') groupby(['列1'],['列2'........]) 分组步骤: (spiltting)拆分 按照一些规则将数据分为不同的组 (Applying)申请 对于每组数据分别执行一个函数 (Combining) 组合 将结果组合到一个数据结构 分组后默认统计的方法 1.size() 大小 = count() max(),min(),std(),median()中位数,first(),last() 函数名 使用 count 分组中非NA(空值)的数量…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组.例如: 当把一个值赋值为一个切片时,该值会作用于此数组片段里每一个元素,例如: 二维数组 二维数组的索引 当以一维数组的索引方式访问一个二维数组的时候,获取的元素不在…
pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索引:   还有一种汇总是累计型的,cumsum(),比较它和 sum() 的区别: unique() 方法用于返回数据里的唯一值:   value_counts() 方法用于统计各值出现的频率:   isin() 方法用于判断成员资格:   安装步骤已经在首篇随笔里写过了,这里不在赘述.利用 Pyt…