POJ - 1845 G - Sumdiv (唯一分解定理)】的更多相关文章

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901). Input The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by…
[POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分  整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   当中pi均为素数 约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的全部因子之和为 S = (1+p1+p1^2+p1^3+...p1^k1…
POJ 1845 [Sumdiv] [题目大意] 给定\(A\)和\(B\),求\(A^B\)的所有约数之和,对\(9901\)取模. (对于全部数据,\(0<= A <= B <=50,000,000\)) [样例输入] 2 3 [样例输出] 15 [算法关键词] 数论 综合模板 二分,乘法逆元 [题解] 不管什么题首先思考的肯定是暴力解法.起码可以骗分啊,当然,如果能一眼标算,那再好不过了. 这道题暴力做法就不说了,其实仔细思考也不会真的打暴力吧... 看见约数,首先想到的应该就是数…
Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16466   Accepted: 4101 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 99…
[题目链接] 点击打开链接 [算法] 不妨先将A分解质因数 A = p1^q1p2^p2p3^p3..pn^qn 那么,A^B = p1^q1Bp2^q2B...pn^qnB 根据约数和定理,A^B的约数和就是 : (p1^0 + p1^1 + .. p1^q1B)(p2^0 + p2^1 + ... p2^q2B) ... (pn^0 + pn^1 + ... + pn^qnB) 显然可以用等比数列求和来做,注意特判逆元不存在的情况 [代码] #include <algorithm> #in…
(题面来自luogu) 题目描述 输入两个正整数a和b,求a^b的所有因子之和.结果太大,只要输出它对9901的余数. 输入格式 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式 a^b的因子和对9901的余数. 题中给出的数据很大,暴力明显不可取.顺着题目的思路,我们需要表示出a^b的所有约数之和.考虑把a质因数分解,则原式可以表示为: 那么上式的所有因数就是它的质因数的组合相乘构成的集合.令它们求和,可以发现,和式可以因式分解后表示为 这个式子把所求的答案表示成了若干和…
题目链接 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 25841   Accepted: 6382 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S…
Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1845 Appoint description:   System Crawler  (2015-05-27) Description Consider two natural numbers A and B. Let S be the sum of all natural…
题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000) 解题思路:我们先利用唯一分解定理,将a分解成(p1^q1)*(p2^q2)……(pk^qk)的形式,则a^b=((p1^q1)*(p2^q2)……(pk^qk))^b=(p1^q1b)*(p2^q2b)……(pk^qkb) a^b的因子和就会等于(1+p1+p1^2+……p1^q1b)*(1+p2+p2^…
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. ,其中为素数 2) 约数和公式: 对于已经分解的整数,A的所有因子之和为 3) 同余模公式: (a+b)%m=(a%m+b%m)%m (a*b)%m=(a%m*b%m)%m 1: 对A进行素因子分解 这里如果先进行筛50000内的素数会爆空间,只能用最朴素的…