ROC曲线,AUC面积】的更多相关文章

题记:          近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线.也是本节实验课题,roc曲线的计算原理以及如果统计TP.FP.TN.FN.TPR.FPR.ROC面积等等.往往运用ROC面积评估模型准确率,一般认为越接近0.5,模型准确率越低,最好状态接近1,完全正确的模型面积为1.下面进行展开介绍: ROC曲线的面积计算原理 一.朴素贝叶斯法的工作过程框架图 二.利用weka工具,找到训练的预处理数据 1.利用朴素贝叶斯算法对weather.nominal.arff文件进行…
转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来衡量分类型模型准确度的工具.通俗点说,ROC与AUC是用来回答这样的问题的: 分类模型的预测到底准不准确? 我们建出模型的错误率有多大?正确率有多高? 两个不同的分类模型中,哪个更好用?哪个更准确? 一句话概括版本: ROC是一条线,如果我们选择用ROC曲线评判模型的准确性,那么越靠近左上角的ROC…
之前介绍了这么多分类模型的性能评价指标(<分类模型的性能评价指标(Classification Model Performance Evaluation Metric)>),那么到底应该选择哪些指标来评估自己的模型呢?答案是应根据应用场景进行选择. 查全率(Recall):recall是相对真实的情况而言的:假设测试集里面有100个正类,如果模型预测出其中40个是正类,那模型的recall就是40%.查全率也称为召回率,等价于灵敏性(Sensitivity)和真正率(True Positive…
来自:https://blog.csdn.net/shenxiaoming77/article/details/72627882 来自:https://blog.csdn.net/u010705209/article/details/53037481 在分类模型中,roc曲线和auc曲线作为衡量一个模型拟合程度的指标. 分类模型评估:  指标  描述  Scikit-learn函数  Precision  AUC  from sklearn.metrics import precision_sc…
混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 2x2 的. 假设要对 15 个人预测是否患病,使用 1 表示患病,使用 0 表示正常.预测结果如下: 预测值: 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 真实值: 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 将上面的预测结果转为混淆矩阵,如下: 上图展示了一个二…
分类模型评估: 指标 描述 Scikit-learn函数 Precision 精准度 from sklearn.metrics import precision_score Recall 召回率 from sklearn.metrics import recall_score F1 F1值 from sklearn.metrics import f1_score Confusion Matrix 混淆矩阵 from sklearn.metrics import confusion_matrix…
一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图:  第一个参数true,false是指预测的正确性.  第二个参数true,postitives是指预测的结果.  相关公式: 检测正列的效果: 检测负列的效果: 公式解释: fp_rate: tp_rate: recall:(召回率) 值越大越好 presssion:(准确率) TP:本来是正例,通过模型预测出来是正列 TP+FP:通过模型预测出来的所有正列数(其中包括本来…
AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间.Auc作为数值可以直观的评价分类器的好坏,值越大越好. 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类. 1. 什么是ROC曲线? ROC曲线是Receiver operating characteristic curve的简称,中文名为“…
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又理解了一下.看了这篇文章: https://www.douban.com/note/247271147/?type=like 讲的很好. 都是基于这张图,先贴一下: PR Precision-Recall曲线,这个东西应该是来源于信息检索中对相关性的评价吧,precision就是你检索出来的结果中,…
分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2针对一个二分类问题,将实例分成正类(postive…