机器学习算法-PCA降维技术】的更多相关文章

机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特征.比如在泰坦尼克号乘员生存预测的问题中我们会将姓名作为无用信息进行处理,这是我们可以从直观上比较好理解的.但是有些特征之间可能存在强相关关系,比如研究一个地区的发展状况,我们可能会选择该地区的GDP和人均消费水平这两个特征作为一个衡量指标.显然这两者之间是存在较强的相关关系,他们描述的都是该地区的…
PCA降维技术 PCA 降维 Fly Time: 2017-2-28 主成分分析(PCA) PCA Algorithm 实例 主成分分析(PCA) 主成分分析(Principal Component Analysi)是一种掌握可以提取主要特征对的方法,它可以从多元失误中解析出主要影响因素.计算朱成福的目的是将高维数据投影到低维空间.主要是用于降维,提取数据的主要特征分量. 降维,当然以为着信息的丢失,但是鉴于数据本身常常存在相关性,我们可以想办法在降维的同时将信息的随时尽量降低. PCA Alg…
始终贯彻数据分析的一个大问题就是对数据和结果的展示,我们都知道在低维度下数据处理比较方便,因而数据进行简化成为了一个重要的技术.对数据进行简化的原因: 1.使得数据集更易用使用.2.降低很多算法的计算开销.3.去除噪音.4.使得结果易懂 这里我们关心的数据降维技术为主成分分析(PCA).在PCA中,数据原来的坐标系转换成了新的坐标系,新的坐标系是由数据本身决定的.第一个新的坐标轴的选择是原始数据中方差最大的方向,第二个新的坐标轴的选择和第一个坐标轴正交且具有最大方差方向.这个过程一直重复,重复次…
PCA降维识别手写数字 关注公众号"轻松学编程"了解更多. PCA 用于数据降维,减少运算时间,避免过拟合. PCA(n_components=150,whiten=True) n_components参数设置需要保留特征的数量,如果是小数,则表示保留特征的比例; 设为大于零的整数,会自动的选取n个主成分- whiten: 默认为False,若为True表示做白化处理,白化处理主要是为了使处理后的数据方差都一致 PCA降维识别手写数字 导包 import numpy as np imp…
PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优化目标 降维实例 代码实现 """ 这里假设原始数据集为矩阵 dataMat,其中每一行代表一个样本,每一列代表同一个特征(与上面的介绍稍有不同,上 面是每一列代表一个样本,每一行代表同一个特征). """ import numpy as np ##…
PCA 主成分分析(Principal components analysis,PCA),维基百科给出一个较容易理解的定义:“PCA是一个正交化线性变换,把数据变换到一个新的坐标系统中,使得这一数据的任何投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推,具体来说,在欧几里得空间给定一组点数,第一主成分对应于通过多维空间平均点的一条线,同时保证各个点到这条直线距离的平方和最小.去除掉第一主成分后,用同样的方法得到第二主成分.依此类推.在Σ中的奇异值…
Pca首先 1.对数据进行去均值 2.构造一个基本的协方差矩阵1/m(X)*X^T 3对协方差矩阵进行变化,得到对角化矩阵,即对角化上有数值,其他位置上的数为0(协方差为0),即求特征值和特征向量的过程 4.求得特征向量的单位化矩阵,单位化特征向量矩阵*原始数据(去均值后的)即降维操作,单位化特征向量的维度决定了降维的维度 以下是实际推导过程 实例求解过程…
pca是一种黑箱子式的降维方式,通过映射,希望投影后的数据尽可能的分散, 因此要保证映射后的方差尽可能大,下一个映射的方向与当前映射方向正交 pca的步骤: 第一步: 首先要对当前数据(去均值)求协方差矩阵,协方差矩阵= 数据*数据的转置/(m-1) m表示的列数,对角线上表示的是方差,其他位置表示的是协方差 第二步:需要通过矩阵对角化,使得协方差为0,只存在对角线方向的数据,这个时候就能得到我们的特征值和特征向量 第三步: 将当前数据*特征向量就完成了降维工作,特征值/特征值之和, 可以表示特…
降维是机器学习中很重要的一种思想.在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ”.另外在高维特征中容易出现特征之间的线性相关,这也就意味着有的特征是冗余存在的.基于这些问题,降维思想就出现了. 降维方法有很多,而且分为线性降维和非线性降维,本篇文章主要讲解线性降维. 1.奇异值分解(SVD) 为什么先介绍SVD算法,因为在后面的PCA算法的实现用到了SVD算法.SVD算法不光可以用…
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,PCA和SVD涉及了大量的矩阵计算,两者都是运算量很大的模型,但其实,SVD有一种惊人的数学性质,即是它可以跳过数学神秘的宇宙,不计算协方差矩阵,直接找出一个新特征向量组成的n维空间,而这个n维空间就是奇异值分解后的右矩阵(所以一开始在讲解降维过程时,我们说”生成新特征向量组成的空间V",并非巧合,而…