filebeat配置多个topic #filebeat.prospectors: filebeat.inputs: - input_type: log encoding: GB2312 # fields_under_root: true fields: ##添加字段 serverip: 192.168.1.10 logtopic: wap enabled: True paths: - /app/wap/logs/catalina.out multiline.pattern: '^\[' #jav…
0x00 filebeat配置多个topic filebeat.prospectors: - input_type: log encoding: GB2312 # fields_under_root: true fields: ##添加字段 serverip: 192.168.1.10 logtopic: wap enabled: True paths: - /app/wap/logs/catalina.out multiline.pattern: '^\[' #java报错过滤 multili…
使用Nginx和Logstash以及kafka来实现网站日志采集的详细步骤和过程 先列出来总体启动流程: (1)启动zookeeper集群(hadoop01.hadoop02和hadoop03这3台机器): zookeeper/bin/zkServer.sh start (2)启动hadoop02机器上的nginx: nginx/sbin/nginx )启动kafka集群(hadoop01.hadoop02和hadoop03这3台机器): kafka/bin/kafka-server-start…
单个进程 logstash 可以实现对数据的读取.解析和输出处理.但是在生产环境中,从每台应用服务器运行 logstash 进程并将数据直接发送到 Elasticsearch 里,显然不是第一选择:第一,过多的客户端连接对 Elasticsearch 是一种额外的压力:第二,网络抖动会影响到 logstash 进程,进而影响生产应用:第三,运维人员未必愿意在生产服务器上部署 Java,或者让 logstash 跟业务代码争夺 Java 资源. 所以,在实际运用中,logstash 进程会被分为两…
引言 上一期我们对比了三类消息产品(Kafka.RabbitMQ.RocketMQ)单纯发送小消息的性能,受到了程序猿们的广泛关注,其中大家对这种单纯的发送场景感到并不过瘾,因为没有任何一个网站的业务只有发送消息.本期,我们就来模拟一个真实的场景: 消息的发送和订阅一定是共存的 要支持多个订阅端订阅自己感兴趣的消息鉴于上一期Kafka和RocketMQ的指标和关注度很高,本期我们将只针对这两个产品,对比在上述场景中,究竟谁更胜一筹.在正式开始测试之前,首先要向大家明确2个概念: Topic为何物…
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Direct方式的offset,但是可能会导致频繁写HDFS占用IO),所以每次出现问题的时候,重启程序,而程序的消费方式是Direct,所以在程序down掉的这段时间Kafka上的数据是消费不到的,虽然可以设置offset为smallest,但是会导致重复消费,重新overwrite hive…
大致架构 * 每个应用实例部署一个日志agent * agent实时将日志发送到kafka * storm实时计算日志 * storm计算结果保存到hbase storm消费kafka 创建实时计算项目并引入storm和kafka相关的依赖 <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>1.0.…
1.概述 对于数据的转发,Kafka是一个不错的选择.Kafka能够装载数据到消息队列,然后等待其他业务场景去消费这些数据,Kafka的应用接口API非常的丰富,支持各种存储介质,例如HDFS.HBase等.如果不想使用Kafka API编写代码去消费Kafka Topic,也是有组件可以去集成消费的.下面笔者将为大家介绍如何使用Flume快速消费Kafka Topic数据,然后将消费后的数据转发到HDFS上. 2.内容 在实现这套方案之间,可以先来看看整个数据的流向,如下图所示: 业务数据实时…
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补充来踩,我会第一时…
强大的功能,丰富的插件,让logstash在数据处理的行列中出类拔萃 通常日志数据除了要入ES提供实时展示和简单统计外,还需要写入大数据集群来提供更为深入的逻辑处理,前边几篇ELK的文章介绍过利用logstash将kafka的数据写入到elasticsearch集群,这篇文章将会介绍如何通过logstash将数据写入HDFS 本文所有演示均基于logstash 6.6.2版本 数据收集 logstash默认不支持数据直接写入HDFS,官方推荐的output插件是webhdfs,webhdfs使用…