BZOJ 2339 卡农(组合数学)】的更多相关文章

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2339 题意: 思路: i64 Pow(i64 a,i64 b,i64 mod){    i64 ans=1;    while(b)    {        if(b&1) ans=ans*a%mod;        a=a*a%mod;        b>>=1;    }    return ans;} i64 n,m;i64 g[N],f[N]; i64 exGcd(i…
问题描述 BZOJ2339 本题的一些心得 对于这种无序集合计数类问题,可以通过对方案数除以某个数的阶乘,使得无序化变为有序化. 设计DP方程时候,应该先有序的列出状态转移方程每一项的来源,并一项项推导式子,可以使得做题过程更加有条理. 一个拥有良好科学素养的人,一定是有条理的 --李理 题解 对于本题,发现如果最后对答案除以 \(m!\),则可以使得集合 「有序化」 . 对于一个满足要求的方案,必须满足以下 \(3\) 个条件: 没有互相重复的集合 没有空集 集合中的每个元素都必须出现偶数次…
题目链接:卡农 听说这道题是经典题? 首先明确一下题意(我在这里纠结了好久):有\(n\)个数,要求你选出\(m\)个不同的子集,使得每个数都出现了偶数次.无先后顺序. 这道题就是一道数学题.显然我们可以强制有先后顺序,只需要在最后除掉一个\(m!\)即可.令\(f_i\)表示选出\(i\)个子集的方案数,我们来考虑一下怎么算. 由于总的方案数很好计算,选出\(i\)个子集的方案就是\(A^{i-1}_{2^n-1}\),因为一旦选出了前\(i-1\)个,第\(i\)个就已经确定了. 我们这样选…
2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][Discuss] Description 可以把集合视作有序的,当做排列做,最后再 /m!设f[i]表示选出i个集合的合法方案 选出了(i-1)个集合后,最后一个集合是唯一确定的 总数就是A(2^n - 1,i-1)但是最后确定的集合可能使方案不合法,有两种情况1.最后确定的集合为空,这种情况的方案…
[BZOJ2339]卡农(递推,容斥) 题面 BZOJ 题解 先简化一下题意: 在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数. 我们设\(f[i]\)表示选择\(i\)个数异或和为\(0\)的方案数. 直接算是很麻烦的,所以我们反过来,总数减去不合法的. 因为确定了前\(i-1\)个数最后一个数就已经知道了. 所以总方案数是\(A_{2^n-1}^{i-1}\),不合法的有两种,一种是选择了\(0\),一种是有重复. 选择了\(0\),意味着前\(…
[BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见"试题描述" 数据规模及约定 见"试题描述" 题解 先考虑 m 个 01 串排顺序的情况.可以发现如果定下前 m - 1 个 01 串,那么第 m 个串就可以由前面所有 01 串按位异或得出,所以方案数为 A(2n - 1, m - 1)(即除全 0 串外的所有情况选择…
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的和声,即从 n 个音阶中挑选若干个音阶同时演奏出来.为了强调与卡农的不同,他规定任意两个片段所包含的音阶集合都不同.同时为了保持音乐的规律性,他还规定在一段音乐中每个音阶被奏响的次数为偶数.现在的问题是:小余想知道包含 m 个片段的音乐一共有多少种.两段音乐 a 和 b 同种当且仅当将 a 的片段重…
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考虑递推,设$f[i]$为选$i$个集合满足以上条件的方案数. 考虑容斥: 当确定了前$i-1$个集合后,要满足第三个条件的话,第$i$个集合是唯一确定的,所以总方案数为$A_{2^n-1}^{i-1}$. 去掉第$i$个集合是空集的情况,如果第$i$个集合是空集,那么前$i-1$个集合一定合法,即方…
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m\)个不同集合且每个元素出现偶数的组合方案 无序(打乱顺序仍记为一种)通常我们对于有序的做法更简单,怎么转换呢 C组合数的公式是怎么得来的?别说你是背来的\(emmm\)(那也没有做这题的必要了) 有序\(m!\)就得到了无序的 我们考虑\(dp\),数组\(dp_i\)表示选i个不同集合的排列方案…
[BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确定的了.因为内层集合的n个元素可以随便出现,那么总数就是A(2^n-1,m-1).但是可能存在不合法的情况. 1.在前m-1个集合中,n个数出现的次数已经都是偶数了,那么第m个集合为空,不合法,此时方案数为f[m-1].2.第m个集合与之前某个集合相同,那么我们不考虑这两个集合,剩下的方案数为f[i…
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的和声,即从 n 个音阶中挑选若干个音阶同时演奏出来.为了强调与卡农的不同,他规定任意两个片段所包含的音阶集合都不同.同时为了保持音乐的规律性,他还规定在一段音乐中每个音阶被奏响的次数为偶数.现在的问题是:小余想知道包含 m 个片段的音乐一共有多少种.两段音乐 a 和 b 同种当且仅当将 a 的片段重…
题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 到 n n n 个音阶构成的和声,即从 n n n 个音阶中挑选若干个音阶同时演奏出来. 为了强调与卡农的不同,他规定任意两个片段所包含的音阶集合都不同.同时为了保持音乐的规律性,他还规定在一段音乐中每个音阶被奏响的次数为偶数.(注:"一段音乐"指整个曲子) 现在的问题是:小余想知道包含…
Description Solution 比较难想.... 我们先考虑去掉无序的这个条件,改为有序,最后除 \(m!\) 即可 设 \(f[i]\) 表示前\(i\)个合法集合的方案数 明确一点: 如果前\(i-1\)个集合已经确定,并且前\(i\)个是合法的,那么第\(i\)就是确定的,所以是一一对应的关系,如果不考虑重复和空集的情况,那么总方案数就是 \(A_{2^{n}-1}^{i-1}\) 考虑去掉不合法的: 1.当前集合为空集,方案数为 \(f[i-1]\) 2.有两个集合相同,那么去…
题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(Solution\) 为简化问题,将无序转为有序,只需在最后除以\(m!\)即可. 设\(f[i]\)表示构造前\(i\)个集合并满足条件的方案数. 每个数出现次数为偶数,所以如果前\(i-1\)个集合确定,第\(i\)个集合也可以确定.这样对于\(i\)有\(A_{2^n-1}^{i-1}\)种方案…
题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取模1000000007(质数). 解法:先将题目模型化:N 个数组成 M 种组合,且要求组合之间互不相等,把各组合用二进制表示对 N 个数的取舍状态之后的异或和为0.   虽然求得是组合,但我们转化为排列来做计算时更方便.假设 f[i] 表示从 n 个数中选 i 种排列的方案数.那么就是"总的排列数…
Description 首先去除顺序不同算一种的麻烦,就是最后答案除以总片段数\(2^m-1\) 设\(f_i\)表示安排\(i\)个片段的合法种类 那么对于任何一个包含\(i-1\)个片段的序列(除了发\(f_{i-1}\)的那几个合法序列)都能再找到唯一一个片段使得整个序列变为合法序列(那种和旋是基数个就选上).但是还有一种特例就是可能这个新选的片段已经在序列里了,这种情况下把这两个相同的片段去掉肯定还是合法序列啊,就是\(f_{i-2}\) 所以总柿子就是\[f_i= A_{2^m-1}^…
考虑有序选择各子集,最后除以m!即可.设f[i]为选i个子集的合法方案数. 对f[i]考虑容斥,先只满足所有元素出现次数为偶数.确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1). 显然不能为空集,于是去掉前i-1个已经满足限制的方案,也即f[i-1]. 然后去掉第i个子集和之前重复的情况.显然如果有重复,将这两个去掉后仍然是合法的.那么方案数为f[i-2]*(i-1)*(2n-1-(i-2)). #include<iostream> #include<cstdi…
4205: 卡牌配对 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 173  Solved: 76[Submit][Status][Discuss] Description 现在有一种卡牌游戏,每张卡牌上有三个属性值:A,B,C.把卡牌分为X,Y两类,分别有n1,n2张. 两张卡牌能够配对,当且仅当,存在至多一项属性值使得两张卡牌该项属性值互质,且两张卡牌类别不同. 比如一张X类卡牌属性值分别是225,233,101,一张Y类卡牌属性值分别为11…
Description 题库链接 在集合 \(S=\{1,2,...,n\}\) 中选出 \(m\) 个子集,满足三点性质: 所有选出的 \(m\) 个子集都不能为空. 所有选出的 \(m\) 个子集中,不能存在两个完全一样的集合. 所有选出的 \(m\) 个子集中, \(1\) 到 \(n\) 每个元素出现的次数必须是偶数. \(1\leq n,m\leq 1000000\) Solution 一开始想着去容斥出现奇数次的元素.发现是 \(O(n^2)\) 的.只好去颓题解了... 转化一下思…
给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Input 2 2 Sample Output 76 Hint 数据范围 1<=m,n<=1000 不难得到一个思路.最终的答案 = 任选3点的方案数 - 三点共线的方案数. 前者很好求直接组合数就好了.后者可以枚举线段两端点,然后计算第三个点在这个线…
大家说他是卡特兰数,其实也不为过,一开始只是用卡特兰数来推这道题,一直没有怼出来,后来发现其实卡特兰数只不过是一种组合数学,我们可以退一步直接用组合数学来解决,这道题运用组合数的思想主要用到补集与几何法. 假设以矩形左下角为坐标原点,(以下所说路径均满足只能向右或向上走),我们假设原矩阵为a,那么他关于l(y=x+1),对称矩形就是b(黑色),那么出现了c矩阵,他的长为n+1,宽为m-1,易知从(0,0)到(n,m)(a右上角)的路径(在矩形a内)的种数就是C(n+m,m),然后我告诉你从(0,…
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1008 题解: 就很傻逼的组合数学啊... $$ans=M^N-M*(M-1)^{(N-1)}$$ 代码: /************************************************************** Problem: 1008 User: HarryGuo2012 Language: C++ Result: Accepted Time:0 ms Memo…
Description 奶牛贝茜是卡牌游戏的狂热爱好者, 但是令人吃惊的, 她缺乏对手. 不幸的是, 任何牧 群里的其他牛都不是好对手. 他们实在是太差了 , 实际上, 他们玩卡牌游戏时会遵循一种完全可以被预测的模式. 然 而对于贝茜来说, 找到赢的方法仍然是一个挑战. 贝茜和他的朋友埃尔西最近在玩一个简单的卡牌游戏, 总共有 2N 张卡牌, 上面的数字 为 1−2N, 贝茜分得 N 张, 埃尔西分得 N 张. 他们玩 N 局游戏, 每局游戏双方都出一张牌. 最初, 数字大的得 1 分, 输了不…
题意 \(N \times M\)的网格,一开始在\((1, 1)\)每次可以向下和向右走,每经过一个有数字的点最多能将数字减1,最终走到\((N, M)\).问至少要走多少次才能将数字全部变为\(0\).(\(N, M<=1000, a_{i, j}<=10^6\)) 分析 结论题QAQ,不会证明... 题解 设\(d(i, j)\) \(d(i, j) = max( d(i-1, j), d(i, j+1), d(i-1, j+1) ) + a[i, j]\) 答案是\(d(n, 1)\)…
% Cripple Pachebel’s Canon on Matlab% Have fun fs = 44100; % sample ratedt = 1/fs; T16 = 0.125; t16 = [0:dt:T16];[temp k] = size(t16); t4 = linspace(0,4*T16,4*k);t8 = linspace(0,2*T16,2*k); [temp i] = size(t4);[temp j] = size(t8); % Modification func…
这个题我脑洞了一个结论: 首先,我们定义满足以下条件的路径为“从右上到左下的路径”: 对于路径上任何不相同的两个点 $(x_1, y_1)$,$(x_2, y_2)$,都有: $x_1\neq x_2, y_1\neq y_2$ 若 $x_1 > x_2$,则有 $y_1 < y_2$:否则当 $x_1 < x_2$ 时, $y_1 > y_2$. 然后我们找到所有从右上到左下的路径,其中路径的权值和最大的那条路径的权值和就是答案了. 然后我们就可以用 Dp 解决问题了. 我们可以…
Description 农夫栋栋近年收入不景气,正在他发愁如何能多赚点钱时,他听到隔壁的小朋友在讨论兔子繁殖的问题. 问题是这样的:第一个月初有一对刚出生的小兔子,经过两个月长大后,这对兔子从第三个月开始,每个月初生一对小兔子.新出生的小兔子生长两个月后又能每个月生出一对小兔子.问第n个月有多少只兔子? 聪明的你可能已经发现,第\(n\)个月的兔子数正好是第\(n\)个\(Fibonacci\)(斐波那契)数.栋栋不懂什么是Fibonacci数,但他也发现了规律:第\(i+2\)个月的兔子数等于…
题解: 首先用二进制表示每个音阶是否使用,那么共有$2^{n}-1$(空集不可行)种片段,用$a_{i}$来表示每个片段,问题就是求满足$a_{1}\left (xor\right)a_{2}\left (xor\right)......\left (xor\right)a_{m}==0\&\&a_{i}!=a_{j},1<=i<j<=m$的方案数,我们用$f_{i}$表示片段数为i时,且满足前面式子的答案. 那么首先我们在选取i个片段时,必然是由前i-1个片段决定的,所…
题面 题解 将无序化为有序,最后答案除以$m!$. 设$f[i]$表示选出了$i$个子集,并且满足所有的限制的方案数. 因为转移困难,所以考虑容斥 限制了每个数的出现次数为偶数,所以如果前$i - 1$个子集是确定的,第$i$个的选择唯一, 一定是前面选了奇数次的元素的集合. 所以如果没有其他限制的情况下,选出$i$个自己的方案数为$A_{2^n-1}^{i-1}$ 然后减去第$i$个集合为空的情况,方案数为$f[i-1]$ 然后减去第$i$个集合与之前某个子集相同的情况. 如果将这两个相同的集…
题目描述 题解 dp+容斥原理 先考虑有序数列的个数,然后除以$m!$即为集合的个数. 设$f[i]$表示选出$i$个集合作为满足条件的有序数列的方案数. 直接求$f[i]$较为困难,考虑容斥,满足条件的有序数列的方案数=总方案数-不满足条件的方案数. 考虑如果前$i-1$个集合确定,那么第$i$个集合也一定确定,总方案数为$2^n-1$个满足条件的集合(不包括空集)中取出$i-1$个的排列$A_{2^n-1}^{i-1}$. 不满足条件的方案有两种: 1.根据前$i-1$个集合确定的第$i$个…