Jordan Lecture Note-7: Soft Margin SVM】的更多相关文章

Soft Margin SVM  (1)Recall 之前分析到SVM的模型为: \begin{align}\mathop{\min}&\quad \frac{1}{2}w^\prime w\nonumber\\\mathop{s.t}&\quad y_i(x_i^\prime w+b)\geq 1, i=1,2,\cdots,m\label{model:SVM}\end{align} 利用Lagrange乘子法转化为对偶问题: \begin{align}\mathop{\max}&…
一.Hard Margin SVM SVM 的思想,最终用数学表达出来,就是在优化一个有条件的目标函数: 此为 Hard Margin SVM,一切的前提都是样本类型线性可分: 1)思想 SVM 算法的本质就是最大化 margin: margin = 2d,SVM 要最大化 margin,也就是要最大化 d,所以只要找到 d 的表达式,也能解决相应的问题: 2)特征空间中样本点到决策边界的距离 二维平面中: n 维空间中: 此处 n 维空间并不是 3 维的立体空间,而是指 n 个方面,或 n 个…
之前分为两部分讨论过SVM.第一部分讨论了线性SVM,并且针对线性不可分的数据,把原始的问题转化为对偶的SVM求解.http://www.cnblogs.com/futurehau/p/6143178.html 然后考虑到特征数量特别特别多的时候,引入核函数的求解.http://www.cnblogs.com/futurehau/p/6149558.html 但是,之前也遗留了一个问题,就是比如高斯核函数或其他的核函数,虽然large margin能够在一定程度上防止过拟合,但是加入你的核函数太…
(写在前面:机器学习入行快2年了,多多少少用过一些算法,但由于敲公式太过浪费时间,所以一直搁置了开一个机器学习系列的博客.但是现在毕竟是电子化的时代,也不可能每时每刻都带着自己的记事本.如果可以掏出手机或iPad登陆网站就可以看到自己的一些笔记,才更有助于知识的巩固.借此机会,重新整理各大算法,希望自己能有更深的认识,如果有可能,也大言不惭的说希望能够帮助到需要帮助的朋友-) (本篇博客内容来自台大林轩田老师Coursera Machine Learning Technology视频及周志华老师…
The Sequential Minimal Optimization Algorithm (SMO) 本文主要介绍用于解决SVM对偶模型的算法,它于1998年由John Platt在论文“Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines”中提出的.这篇笔记还参考了某篇博客,但由于是一年前的事了,暂时没找到这篇博客,所以没有引用出来,希望该篇博客的主人见谅. (1)解决的问题…
很多材料上面讲道“引入Soft Margin的原因是因为数据线性不可分”,个人认为有些错误,其实再难以被分解的数据,如果我们用很复杂的弯弯绕曲线去做,还是可以被分解,并且映射到高维空间后认为其线性可分.但如果我们细细思考,其实很多算法都有一样的索求:寻求一种之于“最大限度拟合训练集”and“获得更好归纳能力”的平横,也就是所谓的Overfitting and Underfitting.也像人的性格,太过纠结细节或者神经太过大条,都难以和人相处愉快.那让我们的训练集的数据,必须要用很复杂的曲线才可…
Jordan Lecture Note-1: Introduction 第一部分要整理的是Jordan的讲义,这份讲义是我刚进实验室时我们老师给我的第一个任务,要求我把讲义上的知识扩充出去,然后每周都要讲给他听.如果有需要这份讲义的话,请留言,我会用邮件发给你. 首先,我来说说机器学习这个东西.刚进实验室,我根本连什么是机器学习都不知道,听到这个名词后的第一反应是机器人,心想估计是搞硬件的.后来才发现其实机器学习更偏向于后面两个字,也就是“学习”.打个不恰当的比方吧,人类在婴儿时期,还无法对世上…
Jordan Lecture Note-3:梯度投影法 在这一节,我们介绍如何用梯度投影法来解如下的优化问题: \begin{align} \mathop{\min}&\quad f(x)\nonumber\\\mathop{s.t.}&\quad \mathbf{A}_1 x\leq b_1\nonumber\\&\quad \mathbf{A}_2x= b_2\label{equ:originalModel}\end{align} 其中$x\in\mathbb{R}^n,\ma…
题目1 : Colorful Lecture Note 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Little Hi is writing an algorithm lecture note for Little Ho. To make the note more comprehensible, Little Hi tries to color some of the text. Unfortunately Little Hi is using a plain…
Little Hi is writing an algorithm lecture note for Little Ho. To make the note more comprehensible, Little Hi tries to color some of the text. Unfortunately Little Hi is using a plain(black and white) text editor. So he decides to tag the text which…