数据降维的重要性就不必说了,而用NN(神经网络)来对数据进行大量的降维是从2006开始的,这起源于2006年science上的一篇文章:reducing the dimensionality of data with neural networks,作者就是鼎鼎有名的Hinton,这篇文章也标志着deep learning进入火热的时代. 今天花了点时间读了下这篇文章,下面是一点笔记: 多层感知机其实在上世纪已经被提出来了,但是为什么它没有得到广泛应用呢?其原因在于对多层非线性网络进行权值优化时…
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE >的论文,也是这篇论文揭开了深度学习的序幕. 笔记 摘要:高维数据可以通过一个多层神经网络把它编码成一个低维数据,从而重建这个高维数据,其中这个神经网络的中间层神经元数是较少的,可把这个神经网络叫做自动编码网络或自编码器(autoencoder).梯度下降法可用来微调这个自动编码器的权值,但是只有在初始化权值…
WZJ的数据结构(负三十四) 难度级别:C: 运行时间限制:20000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给一棵n个节点的树,请对于形如"u r"的Q个询问, 回答以 u 节点为中心,半径 r 以内的节点中,权值最大的节点的编号是多少.如果有多个节点,返回编号最小的. 输入 共有一组测试数据.第一行包含一个整数 n (1 ≤ n ≤ 10^5),表示节点总数.接下来的一行,包含 n 个数字,表示每个节点的权值 vi (1 ≤ vi ≤ 1…