word2vec使用说明   转自:http://jacoxu.com/?p=1084. Google的word2vec官网:https://code.google.com/p/word2vec/ 下载下来的Demo源码文件共有如下几个: word2vec – Revision 41: /trunk … LICENSE //Apache LICENSE README.txt //工具使用说明 compute-accuracy.c demo-analogy.sh  // demo-classes.…
[本文转自http://ir.dlut.edu.cn/NewsShow.aspx?ID=253,感谢原作者] word2vec是一个将单词转换成向量形式的工具.可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度. 一.理论概述 (主要来源于http://licstar.net/archives/328这篇博客) 1.词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止…
word2vec是一个将单词转换成向量形式的工具.可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度. 一.理论概述 (主要来源于http://licstar.net/archives/328这篇博客) 1.词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量.这个…
word2vec相关基础知识.下载安装參考前文:word2vec词向量中文文本相似度计算 文件夹: word2vec使用说明及源代码介绍 1.下载地址 2.中文语料 3.參数介绍 4.计算相似词语 5.三个词预測语义语法关系 6.关键词聚类 1.下载地址 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 执行 make 编译word2vec工具: Makefile的编译代码在makefile.txt文件里,先改名makefile.txt 为M…
https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词条内容处理成单行数据,word2vec训练原理是基于词共现来训练词之间的语义联系的.不同词条内容需分开训练 2 中文分词:中文NLP很重要的一步就是分词了,分词的好坏很大程度影响到后续的模型训练效果 3 特征处理:也叫词向量编码,将文本数据转换成计算机能识别的数据,便于计算,通常是转换成数值型数据,…
word2vec是Google在2013年开源的一款将词表征为实数值向量的高效工具. gensim包提供了word2vec的python接口. word2vec采用了CBOW(Continuous Bag-Of-Words,连续词袋模型)和Skip-Gram两种模型. 模型原理 语言模型的基本功能是判断一句话是否是自然语言, 从概率的角度来说就是计算一句话是自然语言的概率. 直观地讲"natural language"这个词组出现的概率要比"natural warship&q…
word2vec word2vec/glove/swivel binary file on chinese corpus word2vec: https://code.google.com/p/word2vec/ glove: http://nlp.stanford.edu/projects/glove/ swivel: https://github.com/tensorflow/models/tree/master/swivel http://arxiv.org/abs/1602.02215…
最近在工作之余学习NLP相关的知识,对word2vec的原理进行了研究.在本篇文章中,尝试使用TensorFlow自行构建.训练出一个word2vec模型,以强化学习效果,加深理解. 一.背景知识: 在深度学习实践中,传统的词汇表达方式是使用one-hot向量,其中,向量的维度等于词汇量的大小.这会导致在语料较为丰富,词汇量较大的时候,向量的维度过长,进而产生一个相当大的稀疏矩阵,占用不少内存开销,降低机器运行速度.而word2vec则为这个问题提供了一种解决方案. word2vec是一个用来产…
Word2vec Tutorial RADIM ŘEHŮŘEK 2014-02-02GENSIM, PROGRAMMING157 COMMENTS I never got round to writing a tutorial on how to use word2vec in gensim. It’s simple enough and the API docs are straightforward, but I know some people prefer more verbose fo…
鄙人用了那么多年 google ,却只会简单的空格. 虽然空格已经很强大了.google 对此做了非常多的优化,原则是让你只用最基础的输入搭配空格就能达到跟下面介绍的方法几乎一样的效果,但是还有知道一些 tips 有备无患嘛. 下面列举的方法,测试的对象都是针对中文,有些可能对中文不友好导致效果不佳. 1.google 的 and .or 逻辑 例如有两个完全不相关的词:水果和相机. 你可以通过 and.or关键词或者空格与否来表示 and.or 逻辑. 水果相机 = 水果 and 相机 水果…