主要介绍 隐语义模型 LFM(latent factor model). 隐语义模型最早在文本挖掘领域被提出,用于找到文本的隐含语义,相关名词有 LSI.pLSA.LDA 等.在推荐领域,隐语义模型也有着举足轻重的地位.下述的实验设计见 推荐系统–用户行为和实验设计 基本思想 核心思想: 通过隐含特征(latent factor)联系用户兴趣和物品.具体来说,就是对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品.基于兴趣分类的方法需要解决3个问题: 如何对物品进行分类? 如何…
LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣相似的用户,之后再根据计算出来的用户喜欢的物品给目标用户推荐物品. 而ItemCF,我们可以根据目标用户喜欢的物品,寻找和这些物品相似的物品,再推荐给用户. 我们还有一种方法,先对所有的物品进行分类,再根据用户的兴趣分类给用户推荐该分类中的物品,LFM就是用来实现这种方法. 如果要实现最后一种方法,…
LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣相似的用户,之后再根据计算出来的用户喜欢的物品给目标用户推荐物品. 而ItemCF,我们可以根据目标用户喜欢的物品,寻找和这些物品相似的物品,再推荐给用户. 我们还有一种方法,先对所有的物品进行分类,再根据用户的兴趣分类给用户推荐该分类中的物品,LFM就是用来实现这种方法. 如果要实现最后一种方法,…
http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之隐语义模型latent semantic analysis {博客内容:推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM…
最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic Model其实都属于隐含语义分析技术,是一类概念,他们在本质上是相通的,都是找出潜在的主题或分类.这些技术一开始都是在文本挖掘领域中提出来的,近 些年它们也被不断应用到其他领域中,并得到了不错的应用效果.比如,在推荐系统中它能够基于用户的行为对item进行自动聚类,也就是把item划分到不 同类别/主题,这些…
最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic Model其实都属于隐含语义分析技术,是一类概念,他们在本质上是相通的,都是找出潜在的主题或分类.这些技术一开始都是在文本挖掘领域中提出来的,近些年它们也被不断应用到其他领域中,并得到了不错的应用效果.比如,在推荐系统中它能够基于用户的行为对item进行自动聚类,也就是把item划分到不同类别/主题,这些主题…
https://blog.csdn.net/qq_32690999/article/details/77434381 因为开发了一个新闻推荐系统的模块,在推荐算法这一块涉及到了基于内容的推荐算法(Content-Based Recommendation),于是借此机会,基于自己看了网上各种资料后对该分类方法的理解,用尽量清晰明了的语言,结合算法和自己开发推荐模块本身,记录下这些过程,供自己回顾,也供大家参考~ 目录 一.基于内容的推荐算法 + TFIDF 二.在推荐系统中的具体实现技巧 正文 一…
基于内容的推荐的基本推荐思路是:用户喜欢幻想小说,这本书是幻想小说,则用户有可能喜欢这本小说 两方面要求:(1)知道用户的喜好:(2)知道物品的属性 基于内容的推荐相比协同过滤方法(个人观点):协同过滤用到了大量用户的群体行为特征,两个特点,(1)要大量用户,(2)除了用户的行为之外,不需要其他信息:基于内容的推荐,需要用户和物品的额外信息,如:用户喜好.物品属性等等,但是不需要存储.处理大量的用户数据. 基于内容的推荐和基于知识的推荐没有明确界限,两者区别:前者更侧重于提取物品属性,后者更侧重…
基于内容的推荐通常是给定一篇文档信息,然后给用户推荐与该文档相识的文档.Lucene的api中有实现查询文章相似度的接口,叫MoreLikeThis.Elasticsearch封装了该接口,通过Elasticsearch的More like this查询接口,我们可以非常方便的实现基于内容的推荐. { "more_like_this" : { "fields" : ["title", "content"], "lik…