Spark高级数据分析· 6LSA】的更多相关文章

潜在语义分析 wget http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles-multistream.xml.bz2 1 获取数据 def readFile(path: String, sc: SparkContext): RDD[String] = { val conf = new Configuration() conf.set(XmlInputFormat.START_TAG_KEY, "<page…
Spark高级数据分析--纽约出租车轨迹的空间和时间数据分析 一.地理空间分析: 二.pom.xml 原文地址:https://www.jianshu.com/p/eb6f3e0c09b5 作者:IIGEOywq 一.地理空间分析: object RunGeoTime extends Serializable { val formatter = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss", Locale.ENGLISH) def main(ar…
推荐算法流程 推荐算法 预备 wget http://www.iro.umontreal.ca/~lisa/datasets/profiledata_06-May-2005.tar.gz cd /Users/erichan/garden/spark-1.6.0-bin-hadoop2.6/bin ./spark-shell --master local --driver-memory 6g 1 准备数据 val data ="/Users/erichan/AliDrive/ml_spark/da…
2.4 小试牛刀:Spark shell和SparkContext 本章使用的资料来自加州大学欧文分校机器学习资料库(UC Irvine Machine Learning Repository),这个资料库为研究和教学提供了大量非常好的数据源, 这些数据源非常有意义,并且是免费的.由于网络原因,无法从原始地址下载数据集,这里可以从以下链接获取: https://pan.baidu.com/s/1dENp41V 或 http://pan.baidu.com/s/1c29fBVy 获取数据集以后,可…
第二章: 备注:1.本书第二章样例数据由于才有的是短链接,国内的用户可能无法下载.我把数据集拷贝到百度网盘上.大家可以从这个地方下载:http://pan.baidu.com/s/1pJvjHA7 谢谢读者钱先生指出这个问题. 2.P11,要记得设置log4j.properties文件,将日志级别改为WARN,否则看到的输出可能不太一样:有许多的INFO! 勘误表:1.第2章P16页开始部分,“创建RDD的动作(action)并不会导致集群执行分布式计算”中“创建RDD的动作(action)”有…
wget https://archive.ics.uci.edu/ml/machine-learning-databases/00210/donation.zip 数据清洗 cd /Users/erichan/garden/spark-1.6.0-bin-hadoop2.6/bin ./spark-shell --master local val data ="/Users/erichan/AliDrive/ml_spark/data/linkage" val rawblocks =…
学完了<Spark快速大数据分析>,对Spark有了一些了解,计划更近一步,开始学习<Spark高级数据分析>.这本书是用Scala写的,在学习的过程中想把其中的代码转换成Java版本,应该会花很长时间在这本书上.学习时使用的Spark版本是1.6.1,其实2.0.0已经出了,等以后有机会再更新到2.0吧. 此书自带的源码地址: https://github.com/sryza/aas 我的源码地址: https://github.com/jiangpz/AnalysisWithS…
本文基于<Spark 高级数据分析>第2章 用Scala和Spark进行数据分析. 完整代码见 https://github.com/libaoquan95/aasPractice/tree/master/c2/Into 1.获取数据集 数据集来自加州大学欧文分校机器学习资料库(UC Irvine Machine Learning Repository),这个资料库为研究和教学提供了大量非常好的数据源, 这些数据源非常有意义,并且是免费的. 我们要分析的数据集来源于一项记录关联研究,这项研究是…
摘要:Apache Spark的出现让普通人也具备了大数据及实时数据分析能力.鉴于此,本文通过动手实战操作演示带领大家快速地入门学习Spark.本文是Apache Spark入门系列教程(共四部分)的第一部分. Apache Spark的出现让普通人也具备了大数据及实时数据分析能力.鉴于此,本文通过动手实战操作演示带领大家快速地入门学习Spark.本文是Apache Spark入门系列教程(共四部分)的第一部分. 全文共包括四个部分: 第一部分:Spark入门,介绍如何使用Shell及RDDs…
给大家分享一下Spark是什么?如何用Spark进行数据分析,对大数据感兴趣的小伙伴就随着小编一起来了解一下吧.     大数据在线学习 什么是Apache Spark? Apache Spark是一个为速度和通用目标设计的集群计算平台. 从速度的角度看,Spark从流行的MapReduce模型继承而来,可以更有效地支持多种类型的计算,如交互式查询和流处理.速度在大数据集的处理中非常重要,它可以决定用户可以交互式地处理数据,还是等几分钟甚至几小时.Spark为速度提供的一个重要特性是其可以在内存…
Python3实战Spark大数据分析及调度 搜索QQ号直接加群获取其它学习资料:715301384 部分课程截图: 链接:https://pan.baidu.com/s/12VDmdhN4hr7ypdKTJvvgKg  提取码:cv9z PS:免费分享,若点击链接无法获取到资料,若如若链接失效请加群 其它资源在群里,私聊管理员即可免费领取:群——715301384,点击加群,或扫描二维码 第1章 课程介绍 课程介绍 1-1 PySpark导学试看 1-2 OOTB环境演示 第2章 实战环境搭建…
Python3实战spark大数据分析及调度  ☝☝☝ 一.实例分析 1.1 数据 student.txt 1.2 代码 二.代码解析 2.1函数解析 2.1.1 collect() RDD的特性 在进行基本RDD“转换”运算时不会立即执行,结果不会显示在显示屏中,collect()是一个“动作”运算,会立刻执行,显示结果. 2.1.2 reduce()说明reduce()函数会对参数序列中的元素进行累积. 语法reduce(function, iterable[, initializer])…
Python3实战spark大数据分析及调度  整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时候可以关注下面几点: 1.为了追求精简简洁牺牲了部分实用性,导致不足以达到某些工作的需要2.大部分是实战课程弱化了其他技术点的不足,无法全面了解python,但是很多都是刚接触python的(很致命)3.因为是录播课程导致某些问题不能及时去解决,没人交流(这个最烦) 所以真要把python学…
数据清洗时数据科学项目的第一步,往往也是最重要的一步. 本章主要做数据统计(总数.最大值.最小值.平均值.标准偏差)和判断记录匹配程度. Spark编程模型 编写Spark程序通常包括一系列相关步骤: 1. 在输入数据集上定义一组转换. 2. 调用action,用以将转换后的数据集保存到持久存储上,或者把结果返回到驱动程序的本地内存. 3. 运行本地计算,本地计算处理分布式计算的结果.本地计算有助于你确定下一步的转换和action. 2.4 小试牛刀:Spark shell和SparkConte…
一.spark SQL:类似于Hive,是一种数据分析引擎 什么是spark SQL? spark SQL只能处理结构化数据 底层依赖RDD,把sql语句转换成一个个RDD,运行在不同的worker上 特点: 1.容易集成:SQL语句 2.对不同的数据源提供统一的访问方式:DataFrame 用DataFrame屏蔽数据源的差别 3.兼容Hive 大纲: 核心概念:DataFrame(看作表):就是表,是Spark SQL对结构化数据的抽象集合 表现形式:RDD 表=表结构+数据 DataFra…
本文来自网易云社区 作者:王佳楠 一.概述 现如今在大规模数据处理分析的技术领域中,Hadoop及其生态内的各功能组件占据了绝对的统治地位.Hadoop原生的MapReduce计算框架由于任务抽象简单.计算流程固定.计算的中间结果写入磁盘引起大量读写开销等短板,正逐步的被基于内存的分布式计算框架Spark代替,应用于各类大规模数据处理分析的场景中,其优势主要体现在以下5个方面:  1.更快的计算速度.采用计算中间结果的内存缓存机制和基于DAG的数据处理过程优化策略,进一步提升数据处理速率.  2…
Working on a Per-Partition Basis(基于分区的操作) 以每个分区为基础处理数据使我们可以避免为每个数据项重做配置工作.如打开数据库连接或者创建随机数生成器这样的操作,我们希望避免为每个元素重做配置工作.Spark有分区版本的map和foreach,通过让RDD的每个分区只运行一次代码,可帮助降低这些操作的成本. 回到我们的呼号例子中,有一个无线电台呼号的在线数据库,我们可以查询联系日志的公共列表.通过使用基于分区的操作,我们可以分享数据库的连接池来避免为多个连接配置…
Introduction(介绍) 本章介绍了之前章节没有涵盖的高级Spark编程特性.我们介绍两种类型的共享变量:用来聚合信息的累加器和能有效分配较大值的广播变量.基于对RDD现有的transformation(转换),我们针对构建成本高的任务引入批量操作,如查询数据库.为了扩展我们可使用工具的范围,我们介绍Spark与外部程序交互的方法,例如用R编写的脚本. 在本章中,我们将以无线电台的通话记录作为输入构造一个示例.这些日志至少包括联系电台的呼号.呼号由国家分配,并且每个国家有自己的呼号范围,…
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章中分类和回归都属于监督学习.当目标值是未知时,需要使用非监督学习,非监督学习不会学习如何预测目标值.但是,它可以学习数据的结构并找出相似输入的群组,或者学习哪些输入类型可能出现,哪些类型不可能出现. 5.1 异常检测 异常检测常用于检测欺诈.网络攻击.服务器及传感设备故障.在这些应用中,我们要能够找…
预测是非常困难的,更别提预测未来. 4.1 回归简介 随着现代机器学习和数据科学的出现,我们依旧把从“某些值”预测“另外某个值”的思想称为回归.回归是预测一个数值型数量,比如大小.收入和温度,而分类则指预测标号或类别,比如判断邮件是否为“垃圾邮件”,拼图游戏的图案是否为“猫”. 将回归和分类联系在一起是因为两者都可以通过一个(或更多)值预测另一个(或多个)值.为了能够做出预测,两者都需要从一组输入和输出中学习预测规则.在学习的过程中,需要告诉它们问题及问题的答案.因此,它们都属于所谓的监督学习.…
偏好是无法度量的. 相比其他的机器学习算法,推荐引擎的输出更直观,更容易理解. 接下来三章主要讲述Spark中主要的机器学习算法.其中一章围绕推荐引擎展开,主要介绍音乐推荐.在随后的章节中我们先介绍Spark和MLib的实际应用,接着介绍一些机器学习的基本思想. 3.1 数据集 用户和艺术家的关系是通过其他行动隐含提现出来的,例如播放歌曲或专辑,而不是通过显式的评分或者点赞得到的.这被称为隐式反馈数据.现在的家用电视点播也是这样,用户一般不会主动评分. 数据集在http://www-etud.i…
1.1 数据科学面临的挑战 第一,成功的分析中绝大部分工作是数据预处理. 第二,迭代与数据科学紧密相关.建模和分析经常需要对一个数据集进行多次遍历.这其中一方面是由机器学习算法和统计过程本身造成的. 第三,构建完编写卓越的模型不等于大功告成.数据科学的目标在于让数据对不懂科学的人有用. 1.2 认识Apache Spark Spark继承了MapReduce的线性扩展性和容错性,同事对它做了一些重量级扩展. Spark摒弃了MapReduce先map再reduce这样的严格方式. Spark扩展…
排序,真的非常重要! RDD.scala(源码) 在其,没有罗列排序,不是说它不重要! 1.基础排序算法实战 2.二次排序算法实战 3.更高级别排序算法 4.排序算法内幕解密 1.基础排序算法实战 启动hdfs集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoo…
2014Spark峰会在美国旧金山举行,与会数据库平台供应商DataStax宣布,与Spark供应商Databricks合作,在它的旗舰产 品 DataStax Enterprise 4.5 (DSE)中,将Cassandra NoSQL数据库与Apache Spark开源引擎相结合,为用户提供基于内存处理的实时分析. Databricks是一家由Apache Spark创始人成立的公司.谈到这次合作,DataStax副总裁John Glendenning表示:“将Spark与Cassandra…
启动spark-shell 如果你有一个Hadoop 集群, 并且Hadoop 版本支持YARN, 通过为Spark master 设定yarn-client 参数值,就可以在集群上启动Spark 作业:$ spark-shell --master yarn-client如果你是在自己的计算机上运行示例,可以通过设定local[N] 参数来启动本地Spark 集群,其中N 代表运行的线程数,或者用* 表示使用机器上所有可用的核数.比如,要在一个8 核的机器上用8 个线程启动一个本地集群,可以输入…
Spark源码分析: https://yq.aliyun.com/articles/28400?utm_campaign=wenzhang&utm_medium=article&utm_source=QQ-qun&utm_content=m_11999 Spark shuffle: http://blog.csdn.net/johnny_lee/article/details/22619585 Spark java.lang.OutOfMemoryError: Java heap…
一.combineByKey算子简介 功能:实现分组自定义求和及计数. 特点:用于处理(key,value)类型的数据. 实现步骤: 1.对要处理的数据进行初始化,以及一些转化操作 2.检测key是否是首次处理,首次处理则添加,否则则进行分区内合并[根据自定义逻辑] 3.分组合并,返回结果 二.combineByKey算子代码实战 package big.data.analyse.scala.arithmetic import org.apache.spark.sql.SparkSession…
一.基于排序机制的wordcount程序 1.要求 1.对文本文件内的每个单词都统计出其出现的次数. 2.按照每个单词出现次数的数量,降序排序. 2.代码实现 ------java实现------- package cn.spark.study.core; import java.util.Arrays; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apac…
  mapPartitionsWithIndex val func = (index: Int, iter: Iterator[(Int)]) => {   iter.toList.map(x => "[partID:" +  index + ", val: " + x + "]").iterator } val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2) rdd1.mapPar…
Kyligence联合创始人兼CEO,Apache Kylin项目管理委员会主席(PMC Chair)韩卿 武汉市云升科技发展有限公司董事长,<智慧城市-大数据.物联网和云计算之应用>作者杨正洪 万达网络科技集团大数据中心副总经理,<Spark高级数据分析>中文版译者龚少成 数据架构师,IT脱口秀(清风那个吹)创始人,<开源大数据分析引擎Impala实战>作者贾传青 等等业内专家联合推荐 Apache Kylin是一个开源的分布式分析引擎,提供Hadoop之上的SQL查…