mahout运行测试与kmeans算法解析】的更多相关文章

在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 其中 常用聚类算法有:canopy聚类,k均值算法(kmeans),模糊k均值,层次聚类,LDA聚类等 常用分类算法有:贝叶斯,逻辑回归,支持向量机,感知器,神经网络等 下面将运行mahout中自带的example例子jar包来查看mahou是否能正确运行 练习数据下载地址: 点击打开链接 上面的…
在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 其中 常用聚类算法有:canopy聚类,k均值算法(kmeans),模糊k均值,层次聚类,LDA聚类等 常用分类算法有:贝叶斯,逻辑回归,支持向量机,感知器,神经网络等 下面将运行mahout中自带的example例子jar包来查看mahou是否能正确运行 练习数据下载地址: 点击打开链接 上面的…
一. 概述 首先需要先介绍一下无监督学习,所谓无监督学习,就是训练样本中的标记信息是位置的,目标是通过对无标记训练样本的学习来揭示数据的内在性质以及规律.通俗得说,就是根据数据的一些内在性质,找出其内在的规律.而这一类算法,应用最为广泛的就是"聚类". 聚类算法可以对数据进行数据归约,即在尽可能保证数据完整的前提下,减少数据的量级,以便后续处理.也可以对聚类数据结果直接应用或分析. 而Kmeans 算法可以说是聚类算法里面较为基础的一种算法. 二. 从样例开始 我们现在在二维平面上有这…
利用Mahout实现在Hadoop上运行K-Means算法 一.介绍Mahout Mahout是Apache下的开源机器学习软件包,目前实现的机器学习算法主要包含有协同过滤/推荐引擎,聚类和分类三个部分.Mahout从设计开始就旨在建立可扩展的机器学习软件包,用于处理大数据机器学习的问题,当你正在研究的数据量大到不能在一台机器上运行时,就可以选择使用Mahout,让你的数据在Hadoop集群的进行分析.Mahout某些部分的实现直接创建在Hadoop之上,这就使得其具有进行大数据处理的能力,也是…
本博文主要内容有   1.kmeans算法简介 2.kmeans执行过程  3.关于查看mahout中聚类结果的一些注意事项 4.kmeans算法图解      5.mahout的kmeans算法实现原理      6.kmeans算法运行时参数介绍  7.使用mahout自带的fpg算法来对我们的测数据retail.dat进行kmeans算法(但是0.9及其以后版本照样可以用,但是格式要注意)  8.使用开始使用mahout自带的kmeans算法来对我们的测数据retail.dat进行kmea…
预备工作: 启动hadoop集群 准备数据 Synthetic_control.data数据集下载地址http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_control.data 在集群中创建 /user/root/testdata 目录,必须是这个目录,不能改变,若是改变的话,得对应的去改变源码. 将准备好的数据上传到集群的/user/root/testdata下. 预备工作结束. 正式测试: 运行:[hado…
这几天学习了无监督学习聚类算法Kmeans,这是聚类中非常简单的一个算法,它的算法思想与监督学习算法KNN(K近邻算法)的理论基础一样都是利用了节点之间的距离度量,不同之处在于KNN是利用了有标签的数据进行分类,而Kmeans则是将无标签的数据聚簇成为一类.接下来主要是我对<机器学习实战>算法示例的代码实现和理解. 首先叙述下算法项目<对地图上的俱乐部进行聚类>的要求:朋友Drew希望让我们带她去城里庆祝生日,由于其他一些朋友也会过来,所以需要提供一个大家都可行的计划,Drew给出…
写mapreduce程序实现kmeans算法.我们的想法可能是 1. 次迭代后的质心 2. map里.计算每一个质心与样本之间的距离,得到与样本距离最短的质心,以这个质心作为key,样本作为value,输出 3. reduce里,输入的key是质心,value是其它的样本,这时又一次计算聚类中心,将聚类中心put到一个所有变量t中. 4. 在main里比較前一次的质心和本次的质心是否发生变化,假设变化,则继续迭代,否则退出. 本文的思路基本上是依照上面的步骤来做的,仅仅只是有几个问题须要解决 1…
一:数学原理 K-Means算法的作者是MacQueen, 基本的数学原理很容易理解,假设有一个像素 数据集P.我们要根据值不同将它分为两个基本的数据集合Cluster1, Cluster2,使 用K-Means算法大致如下: 假设两个Cluster的RGB值分别为112,225,244和23,34,99则像素集合中的像素点 a(222,212,234), b(198,205,229), c(25,77,52),d(34,55,101)计算每个像素点与这 两个cluster中心点的欧几里德距离,…
Kmeans是最经典的聚类算法之一,它的优美简单.快速高效被广泛使用. Kmeans算法描述 输入:簇的数目k:包含n个对象的数据集D. 输出:k个簇的集合. 方法: 从D中任意选择k个对象作为初始簇中心: repeat; 根据簇中对象的均值,将每个对象指派到最相似的簇: 更新簇均值,即计算每个簇中对象的均值: 计算准则函数: until准则函数不在发生变化. Kmeans 算法的优缺点: 1)优点 (1)k-平均算法是解决聚类问题的一种经典算法,算法简单.快速. (2)对处理大数据集,该算法是…