POJ - 3280 Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u id=16272" class="login ui-button ui-widget ui-state-default ui-corner-all ui-button-text-only" style="display:inline-block;…
题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思路:比较简单的区间DP,令dp[i][j]表示使[i,j]回文的最小花费.则得到状态转移方程: dp[i][j]=min(dp[i][j],min(add[str[i]-'a'],del[str[i]-'a'])+dp[i+1][j]); dp[i][j]=min(dp[i][j],min(add[…
链接http://poj.org/problem?id=1160 很好的一个题,涉及到了以前老师说过的一个题目,可惜没往那上面想. 题意,给出N个城镇的地址,他们在一条直线上,现在要选择P个城镇建立邮局,使得每个城镇到离他最近的邮局距离的总和尽量小. 首先提一个这个问题的简化版本,如果P=1得话,这个距离是多少呢? 这个问题的解就是将这个唯一的邮局建在(l+r)/2的位置,答案就是最优解, 这个类似于中位数的概念,我们有一个数学归纳法简单的证明 数轴上有n个点,求到这n个点距离最小的一个点   …
个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是从把间距为1到ch.size()全部算出来,难道 这就是动态规划,无后效性,即每一步都是最优的状态,所以把所有状况全部解决然后就可以一步一步往后面推了??值得深思 网上题解: 分析:我们知道求添加最少的字母让其回文是经典dp问题,转化成LCS求解.这个是一个很明显的区间dp 我们定义dp [ i ]…
Problem Description In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example, the sequence <A, B, D> is a subsequence of <A,…
Description We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a regular brackets sequence, if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and if a and b are regul…
Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6033   Accepted: 3220 Description We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a regular brackets sequence, if s is a regular…
题目 参考自博客:http://blog.csdn.net/u011498819/article/details/38356675 题意:查找这样的子回文字符串(未必连续,但是有从左向右的顺序)个数. 简单的区间dp,哎,以为很神奇的东西,其实也是dp,只是参数改为区间,没做过此类型的题,想不到用dp,以后就 知道了,若已经知道[0,i],推[0,i+1], 显然还要从i+1 处往回找,dp方程也简单: dp[j][i]=(dp[j+1][i]+dp[j][i-1]+10007-dp[j+1][…
题意 给定一个字符串,问有多少个回文子串(两个子串可以一样). 思路 注意到任意一个回文子序列收尾两个字符一定是相同的,于是可以区间dp,用dp[i][j]表示原字符串中[i,j]位置中出现的回文子序列的个数,有递推关系: dp[i][j]=dp[i+1][j]+dp[i][j-1]-dp[i+1][j-1]  (*) 如果i和j位置出现的字符相同,那么dp[i][j]可以由dp[i+1][j-1]中的子序列加上这两个字符构成回文子序列,也就是 dp[i][j]+=dp[i+1][j-1],注意…
题意:给你一个字符串,请把字符串压缩的尽量短,并且输出最短的方案. 例如:AAAAA可压缩为5(A), NEERCYESYESYESNEERCYESYESYES可压缩为2(NEERC3(YES)). 思路:区间DP,设dp[i][j]是把区间[l, r]内的字符压缩之后的最短长度,那么可以想到区间[l, r]可以通过两种方式转换而来: 1 :[i, j]整个区间本来就可以被压缩 2 :由2个子区间合并而来. 第二种转换是区间DP的常见操作,第一种直接暴力枚举可重叠串的长度即可. 代码: #inc…