#pragma once #include<stdio.h> #include<stdlib.h> #define StackSize 100 typedef int DataType; //栈元素类型定义 typedef struct{ DataType stack[StackSize]; int top; }SeqStack; //将栈初始化为空栈仅仅须要把栈顶指针top置为 void InitStack(SeqStack *S){ S->top=0;//把栈顶指针置为0…
思想:图G是不带权的无向连通图.一条边的长度计为1,因此,求带顶点u和顶点v的最短的路径即求顶点u和顶点v的边数最少的顶点序列.利用广度优先遍历算法,从u出发进行广度遍历,类似于从顶点u出发一层一层地向外扩展,当第一次找到顶点v时队列中便包括了从顶点u到顶点v近期的路径,如图所看到的,再利用队列输出最路径(逆路径),所以设计成非循环队列. 相应算法例如以下: typedef struct  { int data;//顶点编号 int parent;//前一个顶点的位置 } QUEUE;//非循环…
/*题意:有向图,求这样的点的数量:所有点都能到达它.缩点成有向无环图,思:如果该强连通有出度,那么 从该出度出去的边必然回不来(已经缩点了),所以有出度的强连通必然不是.那么是不是所有出度为0的强连通 分量都是呢?显然不是,如果存在多个出度为0的强连通,他们必然无解(他们之间必然不连通). 任然遍历边,判断不在一个连通分量中的边(即为缩点后的边)和点,考察期出度即可.*/ #include<iostream> //329ms,1A,基础题. #include<vector> #i…
在图中求双联通和强联通分量是我们解决非树结构的图连通问题的利器 通过求求图的双联通和强联通分量能把图转化成DAG进行求解: 行走 Description 给出一个有向图,你可以选择从任意点出发走到任意点结束,问最多可以经过多少个点(重复经过只算一次). Input Format 第一行,两个整数,n和m.表示有向图的点数和边数. 接下来是m行每行输入两个数a,b,表示有一条从a到b的路. Output Format 输出最多可以经过的点数 Sample Input 10 10 6 4 0 8 5…
原创 除了DFS和BFS求图中最短路径的方法,算法Floyd-Warshall也可以求图中任意两点的最短路径. 从图中任取两点A.B,A到B的最短路径无非只有两种情况: 1:A直接到B这条路径即是最短路径(前提是存在此路径): 2:A先通过其他点,再由其他点到B. 我们并不知道A是否需要通过其他点间接到达B,所以只能比较,用A到B的直接路径和A先通过其他点 再间接到达B的路径长度进行比较,然后更新为较小值. 上图中若要求顶点4到顶点3的最短路径,可以比较顶点4直接到3的路径和顶点4先到1,再到3…
简单路径(不包括环) DFS遍历以及回溯得到结果 void dfs(ALGraph graph, int v, int end, bool visit[], int path[], int cnt) { visit[v] = true; path[cnt++] = v; if(v == end) { for(int i = 0; i < cnt; i++) { cout<<path[i]<<" "; } cout<<endl; return;…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 题目给了12000ms,对于tarjan这种O(|V|+|E|)复杂度的算法来说,暴力是能狗住的.可以对每个点进行枚举,然后对剩余的网络进行tarjan,对割点所能造成的最大的连通分量进行查询,也就是如下的方程.ans=max{cut[i]}+cnt 其中cnt删除第一个结点之后剩下的网络在初始时刻的连通分量的数量,也就是对每一个第一结点tarjan进行深搜的次数.另外,这次的tarjan中的…
相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两点间的最短路径算法,称为多源最短路径算法. 常用的路径算法有: Dijkstra算法 SPFA算法\Bellman-Ford算法 Floyd算法\Floyd-Warshall算法 Johnson算法 其中最经典的是Dijkstra算法和Floyd算法.Floyd算法是多源最短路径算法,可以直接求出图…
Kruscal算法求图的最小生成树 概述   和Prim算法求图的最小生成树一样,Kruscal算法求最小生成树也用到了贪心的思想,只不过前者是贪心地选择点,后者是贪心地选择边.而且在算法的实现中,我们还用用到了并查集(也称不相交集的)Union /Find 算法来判断两个节点连通后会不会形成一个环.该算法的思想很简单:将图的所有边按从小到大顺序排序,每次都选取权值最小的边加入最小生成树,如果该边的加入会使生成树形成一个环,则跳过该边.   这里引入并查集的概念,可以使问题变得简单化.并查集就是…
基于连通图,邻接矩阵实现的图,非递归实现. 算法思想: 设置两个标志位,①该顶点是否入栈,②与该顶点相邻的顶点是否已经访问. A 将始点标志位①置1,将其入栈 B 查看栈顶节点V在图中,有没有可以到达.且没有入栈.且没有从这个节点V出发访问过的节点 C 如果有,则将找到的这个节点入栈,这个顶点的标志位①置1,V的对应的此顶点的标志位②置1 D 如果没有,V出栈,并且将与v相邻的全部结点设为未访问,即全部的标志位②置0 E 当栈顶元素为终点时,设置终点没有被访问过,即①置0,打印栈中元素,弹出栈顶…