[深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% import torch print(torch.__version__) # 查看CUDA GPU是否可用 a = torch.cuda.is_available() print(a) #%% # torch.randperm x = torch.randperm(6) print(x) #%% #…
一.继承nn.Module类并自定义层 我们要利用pytorch提供的很多便利的方法,则需要将很多自定义操作封装成nn.Module类. 首先,简单实现一个Mylinear类: from torch import nn # Mylinear继承Module class Mylinear(nn.Module): # 传入输入维度和输出维度 def __init__(self,in_d,out_d): # 调用父类构造函数 super(Mylinear,self).__init__() # 使用Pa…
一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. 上左图中,箭头的长度表示陡峭度,越陡峭的地方箭头越长,箭头指向的方向是y变大的方向,如果要使用梯度下降,则需要取负方向. 右图中,蓝色代表低点,红色代表高点,中间的箭头方向从蓝色指向红色,而且中间最陡峭的地方,箭头最长. 二.梯度下降 上图中分别使用梯度下降优化θ1和θ2的值,α表示学习率,即每次按…
一.visdom可视化工具 安装:pip install visdom 启动:命令行直接运行visdom 打开WEB:在浏览器使用http://localhost:8097打开visdom界面 二.使用visdom # 导入Visdom类 from visdom import Visdom # 定义一个env叫Mnist的board,如果不指定,则默认归于main viz = Visdom(env='Mnist') # 在window Accuracy中画train acc和test acc,x…
一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvision的whl文件 使用pip install whl_dir安装torch,并且同时安装torchvision 二.初步使用pytorch # -*- coding:utf-8 -*- __author__ = 'Leo.Z' import torch import time # 查看torch版本…
Learn From: Pytroch 官方Tutorials Pytorch 官方文档 环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展 #%% #%% # 1.Loading and normalizing CIFAR10 import torch import torchvision import torchvision.transforms as transforms batch_size = 16 transform = transform…
Module 是 pytorch 提供的一个基类,每次我们要 搭建 自己的神经网络的时候都要继承这个类,继承这个类会使得我们 搭建网络的过程变得异常简单. 本文主要关注 Module 类的内部是怎么样的. 初始化方法中做了什么def __init__(self): self._backend = thnn_backend self._parameters = OrderedDict() self._buffers = OrderedDict() self._backward_hooks = Or…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 PyTorch 中网络模型的创建步骤.网络模型的内容如下,包括模型创建和权值初始化,这些内容都在nn.Module中有实现. 网络模型的创建步骤 创建模型有 2 个要素:构建子模块和拼接子模块.如 LeNet 里包含很多卷积层.池化层.全连接层,当我们构建好所有的子模块之后,按照一定的顺序拼接起来…
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分拣 肺癌检测 准确度高于人类的语言翻译 读懂图片中的图像含义 现今深度学习应用中最受欢迎的技术和出现的时间点 技术 年份 神经网络 1943 反向传播 20世纪60年代初期 卷积神经网络 1979 循环神经网络 1980 长短期记忆网络 1997 深度学习过去的叫法 20世纪70年代叫控制论(cyb…
深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction=True, weights=None) 这是一个用于构建很常见的自动编码模型.如果参数output_reconstruction=True,那么dim(input)=dim(output):否则dim(output)=dim(hidden). inputshape: 取决于encoder的定义 ou…