最近要了解一下Incremental PCA的一些知识,然后看到一篇论文里面讲到了SVD(奇异值分解),奈何自己以前没有把机器学习的课好好上,现在很多东西还是要补回来.所以,我就想了解一些SVD的基础知识. PCA的实现一般有两种方法,一种是用特征值分解去实现,一种是用奇异值分解去实现的,SVD貌似在很多领域都有很重要的应用. 特征值和特征向量 特征值和特征向量是线性代数里面的基础知识,相信大部分人都知道: 很显然,λ就是特征向量v对应的特征值,一个矩阵的一组特征向量都是相互正交的,相信这些大家…