hive 调优(三)tez优化】的更多相关文章

数据倾斜即为数据在节点上分布不均,是常见的优化过程中常见的需要解决的问题.常见的Hive调优的方法:列剪裁.Map Join操作. Group By操作.合并小文件. 一.表现 1.任务进度长度为99%,在任务监控页面中发现只有几个 reduce 子任务未完成: 2.单一 reduce 记录与平均记录数差异过大(大于3倍),最长时长>>平均时长: 3.job数多的,效率低,多次关联后,产生几个jobs,起码半小时以上才跑完: 二.原因 1.key分布不均: 2.业务数据本身问题: 3.建表有问…
hive 调优(一)coding调优 本人认为hive是很好的工具,目前支持mr,tez,spark执行引擎,有些大公司原来封装的sparksql,开发py脚本,但是目前hive支持spark引擎(不是很稳定,建议Tez先),所以离线还是用hive比较好. 先将工作中总结,以及学习其他人的hive优化总结如下: 一. 表连接优化 这是比较常见的问题 1.  将大表放后头 Hive假定查询中最后的一个表是大表.它会将其它表缓存起来,然后扫描最后那个表. 因此通常需要将小表放前面,或者标记哪张表是大…
前言 Hive是由Facebook 开源用于解决海量结构化日志的数据统计,是基于Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类 SQL查询功能. 在资源有限的情况下,提高作业的查询效率从而达到快速产出数据的想法势在必行.掌握Hive的调优方法能够提升工作效率同时提高任务执行的稳定性.本文会从以下几个方面介绍Hive调优的思路: 设计优化 存储优化 作业优化 1.设计优化 分区表和索引 对表进行合理的管理以及提高查询效率,分区是表的部分列的集合,可以为频繁使用的数据…
Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不必使用MapReduce计算.在这种情况下,Hive可以简单地读取employee对应的存储目录下的文件,然后输出查询结果到控制台.(原则就是能不用MapReduce就不用MapReduce) 比如以下这几种情况: SELECT * FROM score; SELECT s_score FROM s…
Hive调优 Hive调优 Fetch抓取 本地模式 表的优化 小表.大表Join 大表Join大表 MapJoin Group By Count(Distinct) 去重统计 行列过滤 动态分区调整 案例实操 数据倾斜 Map数 小文件进行合并 复杂文件增加Map数 Reduce数 并行执行 严格模式 JVM重用 推测执行 执行计划(Explain) Fetch抓取 Fetch抓取是指:Hive中对某些情况的查询可以不必使用MapReduce计算 例如:SELECT * FROM employ…
Hive调优 先记录了这么多,日后如果有遇到,再补充. fetch模式 <property> <name>hive.fetch.task.conversion</name> <value>more</value> <description> Expects one of [none, minimal, more]. Some select queries can be converted to single FETCH task mi…
hive 调优(二)参数调优汇总 在hive调优(一) 中说了一些常见的调优,但是觉得参数涉及不多,补充如下 1.设置合理solt数 mapred.tasktracker.map.tasks.maximum 每个tasktracker可同时运行的最大map task数,默认值2. mapred.tasktracker.reduce.tasks.maximum 每个tasktracker可同时运行的最大reduce task数,默认值1. 2.配置磁盘块 mapred.local.dir map…
在hive调优(一) 中说了一些常见的调优,但是觉得参数涉及不多,补充如下 1.设置合理solt数 mapred.tasktracker.map.tasks.maximum 每个tasktracker可同时运行的最大map task数,默认值2. mapred.tasktracker.reduce.tasks.maximum 每个tasktracker可同时运行的最大reduce task数,默认值1. 2.配置磁盘块 mapred.local.dir map task中间结果写本地磁盘路径,默…
Spark调优,性能优化 1.使用reduceByKey/aggregateByKey替代groupByKey 2.使用mapPartitions替代普通map 3.使用foreachPartitions替代foreach 4.使用filter之后进行coalesce操作 5.使用repartitionAndSortWithinPartitions替代repartition与sort类操作 6.使用broadcast使各task共享同一Executor的集合替代算子函数中各task传送一份集合…
文章目录 Java性能优化 尽量在合适的场合使用单例 尽量避免随意使用静态变量 尽量避免过多过常地创建Java对象 尽量使用final修饰符 尽量使用局部变量 尽量处理好包装类型和基本类型两者的使用场所 慎用synchronized,尽量减小synchronize的方法 尽量不要使用finalize方法 尽量使用基本数据类型代替对象 多线程在未发生线程安全前提下应尽量使用HashMap.ArrayList 尽量合理的创建HashMap 尽量减少对变量的重复计算 尽量避免不必要的创建 尽量在fin…