[BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数. 其中a<b<c<d. 位置也从0开始标号. 强制在线. 分析 二分答案mid,表示询问的中位数在排过序的整个b序列中是第mid小. 考虑判断一个数是否<=序列的中位数:把大于等于这…
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 475  Solved: 287[Submit][Status][Discuss] Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = 4+1+1 7 = 4+1+1+1 8无法表示为集合S的子集的…
题目链接 先把初始边建成一个森林,每棵树选一个根节点递归建可持久化线段树.当添加新边的时候,把结点数少的树暴力重构,以和它连边的那个点作为父节点继承线段树,并求出倍增数组.树的结点数可以用并查集来维护.总复杂度$O(nlog^2n)$. #include<bits/stdc++.h> using namespace std; typedef long long ll; ,inf=0x3f3f3f3f; ],dep[N],siz[N],fa2[N],rt[N],ls[N*],rs[N*],val…
题意: 左端点在[a,b],右端点在[c,d],求这个线段里中位数(上取整)最大值 思路: 对数组离散化,对每一个值建中位数的可持久化线段树(有重复也没事),就是对于root[i],大于等于i的值为1,小于的为-1, 从小到大插入可持久化线段树即可 如果中位数为m,那么从左端点到右端点[l,r]的序列和应该>=0,我们只需要二分这个m检查是不是序列和>=0即可 满足左端点在[a,b],右端点在[c,d]的子序列和的最大值,就是我们在用线段树维护最大子序和时的 [b+1,c-1]的sum+[a,…
题目大意 在一棵单位边权的有根树上支持询问: 给定a,k求满足下列条件的有序三元对的个数. a,b,c互不相同 a,b均为c的祖先 a,b树上距离<=k 题解 solution 1 首先我们知道,c一定在以a为根的子树内,否则不满足条件2 对于一个询问a,k,我们知道b一定在a的k步以内 所以我们把问题分为两部分: b是a的祖先 a是b的祖先 对于问题一,我们容易发现答案即为\(min(dep_a,k)*(siz_a-1)\) 所以现在问题就在于我们如何处理问题2. 对于问题二我们在这里对c再进…
2223: [Coci 2009]PATULJCI Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 728  Solved: 292[Submit][Status][Discuss] Description Input Output 10 3 1 2 1 2 1 2 3 2 3 3 8 1 2 1 3 1 4 1 5 2 5 2 6 6 9 7 10 Sample Input noyes 1noyes 1noyes 2noyes 3 Sample…
题目连接:BZOJ - 3218 题目分析 题目要求将 n 个点染成黑色或白色,那么我们可以转化为一个最小割模型. 我们规定一个点 i 最后属于 S 集表示染成黑色,属于 T 集表示染成白色,那么对于每个点 i 就要连边 (S, i, B[i]) 和 (i, T, W[i]). 这样,如果一个点属于 S 集,就要割掉与 T 相连的边,就相当于失去了染成白色的收益. 我们再来考虑 “奇怪的点”,一个点 i 变成奇怪的点的条件是:i 是黑色且存在一个白色点 j 满足 j < i && L…
题目链接:BZOJ - 3207 题目分析 先使用Hash,把每个长度为 k 的序列转为一个整数,然后题目就转化为了询问某个区间内有没有整数 x . 这一步可以使用可持久化线段树来做,虽然感觉可以有更简单的做法,但是我没有什么想法... 代码 #include <iostream> #include <cstdio> #include <cstdlib> #include <algorithm> #include <cstring> #inclu…
BZOJ 考虑没有深度限制,对整棵子树询问怎么做. 对于同种颜色中DFS序相邻的两个点\(u,v\),在\(dfn[u],dfn[v]\)处分别\(+1\),\(dfn[LCA(u,v)]\)处\(-1\),这样答案就是求子树和了(同种颜色多余贡献的会被减掉). 对于深度的限制,考虑维护\(\max\{dep\}\)棵线段树\(T_i\),分别表示只考虑深度在\(1\sim i\)之间的点的贡献(下标依旧是DFS序).因为我们发现,对于询问\((x,k)\),求\(T_{dep[x]+k}\)这…
BZOJ 洛谷 求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负. 对于询问\((a,b,c,d)\),同样也可以二分中位数\(x\),然后把原序列对应地改为\(+1\)或\(-1\). 此时区间\([b,c]\)中的数是必选的,求一个和\(sum\).显然对于区间\([a,b-1]\),我们可以求一个和最大的后缀:对于区间\([c+1,d]\),可以求一个和最大的前缀.然后判断总和是…