ICCV 2015 B-CNN细粒度分类】的更多相关文章

哈哈,好久没写博客了....最近懒癌发作~~主要是因为心情不太好啊,做什么事情都不太顺心,不过已经过去啦.最近一直忙着公司的项目,想用这个网络,就给大家带来了的这篇文章.可能比较老,来自ICCV 2015的一篇关于细粒度分类的文章,文章:B-CNN.由于文章比较简单,我就不介绍的那么详细啦~ 科普下:粗粒度与细粒度分类 粗粒度:比如猫狗猪这种差别比较大的. 细粒度:狗类别中,识别是什么品种的狗,这就是细粒度分类. B-CNN框架: 从图中可以看出,其实就是两个卷积神经网络对图像进行特征抽取,然后…
      ICCV 2015:21篇最火爆研究论文 ICCV 2015: Twenty one hottest research papers   “Geometry vs Recognition” becomes ConvNet-for-X Computer Vision used to be cleanly separated into two schools: geometry and recognition. Geometric methods like structure from…
论文提出细粒度分类解决方案CAP,通过上下文感知的注意力机制来帮助模型发现细微的特征变化.除了像素级别的注意力机制,还有区域级别的注意力机制以及局部特征编码方法,与以往的视觉方案很不同,值得一看 来源:晓飞的算法工程笔记 公众号 论文: Context-aware Attentional Pooling (CAP) for Fine-grained Visual Classification 论文地址:https://arxiv.org/abs/2101.06635 论文代码:https://g…
最近在做一个CNN车型分类的任务,首先先简要介绍一下这个任务. 总共30个类,训练集图片为车型图片,类似监控拍摄的车型图片,训练集测试集安6:4分,训练集有22302份数据,测试集有14893份数据. 首先使用的是VGGNet网络, nn.Sequential { [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -&g…
论文提出了类似于dropout作用的diversification block,通过抑制特征图的高响应区域来反向提高模型的特征提取能力,在损失函数方面,提出专注于top-k类别的gradient-boosting loss来优化训练过程,模型在ResNet-50上提升3.2%,算法思路巧妙,结构易移植且效果也不错,值得学习 论文:Fine-grained Recognition: Accounting for Subtle Differences between Similar Classes…
论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的创意和效果来看都十分不错   来源:晓飞的算法工程笔记 公众号 论文: Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization 论文地址:https://arxiv.org/abs/1909.…
谈到文本分类,就不得不谈谈CNN(Convolutional Neural Networks).这个经典的结构在文本分类中取得了不俗的结果,而运用在这里的卷积可以分为1d .2d甚至是3d的.  下面就列举了几篇运用CNN进行文本分类的论文作为总结. 1 yoon kim 的<Convolutional Neural Networks for Sentence Classification>.(2014 Emnlp会议)  他用的结构比较简单,就是使用长度不同的 filter 对文本矩阵进行卷…
3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道理嘛.其实这些个框架一通百通,就是语法不一样了些.从tensorflow开始吧. 关于tf的安装详见另一篇博文,此处tensorflow的学习基本来自Udacity中google的深度学习课程. 1:tensorflow的计算图 在tensorflow中编写代码可以分成两个部分,首先是要定义一个计算…
CNN用于文本分类本就是一个不完美的解决方案,因为CNN要求输入都是一定长度的,而对于文本分类问题,文本序列是不定长的,RNN可以完美解决序列不定长问题, 因为RNN不要求输入是一定长度的.那么对于CNN用于解决文本分类问题而言,可以判断文本的长度范围,例如如果大多数文本长度在100以下,极少数在100以上,那就 可以设定文本长度是100,不足100的文本用padding补齐,多于100的文本则截断.具体过程如下图: 首先把分词之后的句子按照设定的维度展开,这里维度是9,每个单词都会有一个向量表…
论文  < Convolutional Neural Networks for Sentence Classification>通过CNN实现了文本分类. 论文地址: 666666 模型图: 模型解释可以看论文,给出code and comment: # -*- coding: utf-8 -*- # @time : 2019/11/9 13:55 import numpy as np import torch import torch.nn as nn import torch.optim…