首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
51 nod 1188 最大公约数之和 V2
】的更多相关文章
51 nod 1188 最大公约数之和 V2
1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和. 相当于计算这段程序(程序中的gcd(i,j)表示i与j的最大公约数): G=0; for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } Input 第1行:1个数T,表示后面用作输入测试的数的数量.(1 &l…
1188 最大公约数之和 V2
1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和. 相当于计算这段程序(程序中的gcd(i,j)表示i与j的最大公约数): G=0; for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } Input 第1行:1个数T,表示后面用作输入测试的数的数量.(1 <= T <= 50000)…
51nod - 1188 - 最大公约数之和 V2 - 数论
https://www.51nod.com/Challenge/Problem.html#!#problemId=1188 求\(\sum\limits_{i=1}^{n-1}\sum\limits_{j=i+1}^{n}gcd(i,j)\) 首先交换求和\(\sum\limits_{j=2}^{n}\sum\limits_{i=1}^{j-1}gcd(i,j)=\sum\limits_{j=2}^{n}\sum\limits_{i=1}^{j}gcd(i,j)-j\) 像之前那样用莫比乌斯反演…
51nod 1188 最大公约数之和 V2
第二个\( O(T\sqrt(n)) \)复杂度T了..T了..T了...天地良心,这能差多少?! 于是跑去现算(. \[ \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}gcd(i,j) \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}[gcd(i,j)==d] \] \[ \sum_{d=1}^{n}d(\sum_{j=1}^{n}\sum_{i=1}^{j}[gcd(i,j)==d]-\sum_{j=1}^{n}[g…
51nod1188 最大公约数之和 V2
考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi(n/d)*d;O(nlogn); #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> using namespace std; #define rep(i,s,t) fo…
[51nod1188]最大公约数之和 V2(筛法)
题面 传送门 题解 口胡的整除分块单次询问\(O(\sqrt{n})\)的做法居然\(T\)了?那还是好好看正解吧-- 首先我们枚举\(j\),求对于每个\(j\)有所有\(i<j\)的\(\gcd(i,j)\)之和,然后可以转化成枚举\(\gcd d\),然后要满足\(\gcd(\frac{i}{d},\frac{j}{d})=1\) 那么最后的式子可以化成\[Ans=\sum_{j=2}^{n}\sum_{t|j,t<j}\varphi({j\over t})*t\] 复杂度和正常的筛法一…
51 NOD 1244 莫比乌斯函数之和(杜教筛)
1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含平方因子,那么miu(n) = 0.例如:miu(4), miu(12), miu(18) = 0. 如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k.例如:miu(2), mi…
51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N(N <= 10^9) 输出 公约数之和 输入样例 6 输出样例 15 题解 \[ \sum_{i=1}^n\gcd(i,n)=\sum_{d|n}d\varphi(n) \] 暴力搞就行了. 1188 最大公约数之和 V2 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和. 相当于计…
51 nod 1405 树的距离之和
1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之和. Input 第一行包含一个正整数n (n <= 100000),表示节点个数. 后面(n - 1)行,每行两个整数表示树的边. Output 每行一个整数,第i(i = 1,2,...n)行表示所有节点到第i个点的距离之和. Input示例 4 1 2 3 2 4 2 Output示例 5 3…
51 nod 1427 文明 (并查集 + 树的直径)
1427 文明 题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 安德鲁在玩一个叫“文明”的游戏.大妈正在帮助他. 这个游戏里面有n个城市和m条双向的道路.城市从1到n编号.对于每一对城市,他们之间要么有唯一的一条道路,要么就是不可互达.一条道路的定义是一个包含不同城市的序列 v1, v2,...,vk , vi 和 vi+1 (1≤ i < k)之间有直接的一条道路相连.这条道路的长度是k-1.两个城市在同一区…
51 nod 1610 路径计数(Moblus+dp)
1610 路径计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 路径上所有边权的最大公约数定义为一条路径的值. 给定一个有向无环图.T次修改操作,每次修改一条边的边权,每次修改后输出有向无环图上路径的值为1的路径数量(对1,000,000,007取模). Input 第一行两个整数n和m,分别表示有向无环图上的点数和边数.(1<=n<=100,1<=m<=50,000) 第2~m+1行每行三个数x,y,z,表示有一条从x到y权值为z的边.…
51 nod 1394 1394 差和问题(线段树)
1394 差和问题基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个多重集合S(即里面元素可以有重复),初始状态下有n个元素,对他进行如下操作: 1.向S里面添加一个值为v的元素.输入格式为1 v 2.向S里面删除一个值为v的元素.输入格式为2 v 3.询问S里面的元素两两之差绝对值之和.输入格式为3 对于样例, 操作3,|1-2|+|1-3|+|2-3|=4 操作1 4之后,集合中的数字为1 2 3 4 操作3,|1-2|+|1-3|+|2-3|+|1-…
51nod 1237 最大公约数之和 V3(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 [题解] 枚举最大公约数k,得到答案为2*∑(k*phi_sum(n/k))-n*(n+1)/2 phi_sum可以利用杜教筛实现 [代码] #include <cstdio> #include <algorithm> using namespace std; typedef lon…
51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \cdot \varphi(\frac{n}{d})\) \(ans = 2*\sum_{i=1}^n A(i) -\sum_{i=1}^ni\) 套路推♂倒 \[ S(n) =\sum_{i=1}^n\sum_{d\mid i}d \cdot \varphi(\frac{i}{d}) =\sum_{i…
51 nod 1439 互质对(Moblus容斥)
1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开始集合为空.然后有一种操作每次向集合中加入一个数字或者删除一个数字.每次操作给出一个下标x(1 ≤ x ≤ n),如果a[x]已经在集合中,那么就删除a[x],否则就加入a[x]. 问每次操作之后集合中互质的数字有多少对. 注意,集合中可以有重复的数字,两个数字不同当且仅当他们的下标不同. 比如a[…
51 nod 1495 中国好区间
1495 中国好区间 基准时间限制:0.7 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 阿尔法在玩一个游戏,阿尔法给出了一个长度为n的序列,他认为,一段好的区间,它的长度是>=k的,且该区间的第k大的那个数,一定大于等于T.那么问题来了,阿尔法想知道有多少好的区间. 由于阿尔法的序列长度实在是太大了,无法在规定时间内读入. 他想了一个绝妙的方法. 读入a[0],b,c,p,则a[i]=(a[i-1]*b+c)mod p. 样例解释: a1~a5分别为47,135,247…
51 nod 1055 最长等差数列(dp)
1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不列举) 1 3 5 1 5 9 13 3 6 9 12 3 8 13 5 9 13 6 8 10 12 14 其中6 8 10 12 14最长,长度为5. Input 第1行:N,N为正整数的数量(3 <= N <= 10000).…
51 nod 1421 最大MOD值
1421 最大MOD值 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个a数组,里面有n个整数.现在要从中找到两个数字(可以是同一个) ai,aj ,使得 ai mod aj 最大并且 ai ≥ aj. Input 单组测试数据. 第一行包含一个整数n,表示数组a的大小.(1 ≤ n ≤ 2*10^5) 第二行有n个用空格分开的整数ai (1 ≤ ai ≤ 10^6). Output 输出一个整数代表最大的mod值. I…
51 nod 1681 公共祖先 (主席树+dfs序)
1681 公共祖先 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个庞大的家族,共n人.已知这n个人的祖辈关系正好形成树形结构(即父亲向儿子连边). 在另一个未知的平行宇宙,这n人的祖辈关系仍然是树形结构,但他们相互之间的关系却完全不同了,原来的祖先可能变成了后代,后代变成的同辈…… 两个人的亲密度定义为在这两个平行宇宙有多少人一直是他们的公共祖先. 整个家族的亲密度定义为任意两个人亲密度的总和. Input 第一行一个数n(1<=n<=10000…
51 nod 1766 树上的最远点对(线段树+lca)
1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c<=j<=d} (PS 建议使用读入优化) Input 第一行一个数字 n n<=100000. 第二行到第n行每行三个数字描述路的情况, x,y,z (1<=x,y<=n,1&l…
51 nod 1406 与查询
1406 与查询 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有n个整数.输出他之中和x相与之后结果为x的有多少个.x从0到1,000,000 Input 第一行输入一个整数n.(1<=n<=1,000,000). 第二行有n个整数a[0],a[1],a[2],...a[n-1],以空格分开.(0<=a[i]<=1,000,000) Output 对于每一组数据,输出1000001行,第i行对应和i相与结…
51 nod 1456 小K的技术(强连通 + 并查集)
1456 小K的技术 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 苏塞克王国是世界上创新技术的领先国家,在王国中有n个城市,标记为1到n. 由于小K的研究,我们最终能过在两个城市之间建立传输管道,一个传输管道能单向连接两个城市,即,一个从城市x到城市y的传输管道不能被用于从城市y传输到城市x.在每个城市之间的运输系统已经建立完善,因此,如果从城市x到城市y的管道和从城市y到城市z的管道都被已经被建立,人们能够立即从x到…
51 nod 1023 石子归并 V3(GarsiaWachs算法)
1023 石子归并 V3基准时间限制:2 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价. 例如: 1 2 3 4,有不少合并方法 1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19) 1 2 3 4 => 1 5 4(5) => 1 9(14) => 1…
51 nod 1515 明辨是非(并查集合并)
1515 明辨是非题目来源: 原创基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 给n组操作,每组操作形式为x y p. 当p为1时,如果第x变量和第y个变量可以相等,则输出YES,并限制他们相等:否则输出NO,并忽略此次操作. 当p为0时,如果第x变量和第y个变量可以不相等,则输出YES,并限制他们不相等 :否则输出NO,并忽略此次操作. Input 输入一个数n表示操作的次数(n<=1*10^5) 接下来n行每行三个数x,y,p(x,y<=1*10^8…
51nod 1040 最大公约数之和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 Input 1个数N(N <= 10^9) Output 公约数之和 Input示例 6 Output示例 15 /* 51nod 1040 最大公约数之和(欧拉函数) 给你n,然后求[1-n]…
51 nod 1205 流水线调度
51 nod 1205 流水线调度 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 N个作业{1,2,…,n}要在由2台机器M1和M2组成的流水线上完成加工.每个作业加工的顺序都是先在M1上加工,然后在M2上加工.M1和M2加工作业i所需的时间分别为a[i]和b[i].你可以安排每个作业的执行顺序,使得从第一个作业在机器M1上开始加工,到最后一个作业在机器M2上加工完成所需的时间最少.求这个最少的时间. Input 第1行:1个数N,表示作业的数量.(…
51nod 1040 最大公约数之和 欧拉函数
1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 Input 1个数N(N <= 10^9) Output 公约数之和 Sample Input 6 Sample Output 15 Hint…
51nod 1040 最大公约数之和
给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 Input 1个数N(N <= 10^9) Output 公约数之和 Input示例 6 Output示例 15—————————————————————————这道题枚举 约数d 约数的贡献就是 $\sum_{d|n}\phi(\frac{n}{d})d$ 因为和n的最大公约数是d的 除以d之后就一定是和n/d 互质的 #inclu…
FFT版题 [51 Nod 1028] 大数乘法
题目链接:51 Nod 传送门 数的长度为10510^5105,乘起来后最大长度为2×1052\times10^52×105 由于FFT需要把长度开到222的次幂,所以不能只开到2×1052\times10^52×105,会TLE(卡了好久,还以为是要压位) #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const…
51nod1040 最大公约数之和,欧拉函数或积性函数
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单对吧,但是n<=1e9,所以暴力是不行的,所以要把公式进行推导. 引用51nod1040最大公约数之和(欧拉函数) 这个自己上手推一下也很好推的,不过没推过公式的可能不太懂. #include<cstdio> #include<cmath> typedef long long l…