对于印刷体图片来说,进行水平投影和垂直投影可以很快的进行分割,本文就在OpenCV中如何进行水平投影和垂直投影通过代码进行说明. 水平投影:二维图像在y轴上的投影 垂直投影:二维图像在x轴上的投影 由于投影的图像需要进行二值化,本文采用积分二值化的方式,对图片进行处理. 具体代码如下: //积分二值化 void thresholdIntegral (Mat inputMat, Mat& outputMat) { int nRows = inputMat.rows; int nCols = inp…
Python 对图片做垂直投影 本文利用opencv对图片进行垂直投影,做出垂直投影图,大体思路:打开图片,灰度化,二值化,按列进行统计,新建一个大小和原图一样的图片,按列进行填充: cv2.cv.Get2D(cv2.cv.fromarray(img), y, x) 获取物理坐标为(y,x)处的灰度值 cv2.cv.Set2D(cv2.cv.fromarray(img), y, x,(255, 255, 255)) 设置某一位置处rgb值 实现 例如: # -*-coding:utf-8-*-…
实现步骤: 1.通过水平投影对图形进行水平分割,获取每一行的图像: 2.通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符: 先简单介绍一下投影法:分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 下面通过Python+opencv来实现该功能 首先来实现水平投影: import cv2 impor…
  用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问题,浏览代码之后,我提供了一些对原始算法的更新和改进. 首先需要留意的是,这个算法并不是对所有条形码有效,但会给你基本的关于应用什么类型的技术的直觉. 假设我们要检测下图中的条形码: 图1:包含条形码的示例图片 现在让我们开始写点代码,新建一个文件,命名为detect_barcode.py,打开并编…
关于文字和图片的水平垂直居中,在前端界绝对算是一个老生常谈的问题了,尤其是垂直居中,什么千奇百怪的解法都能想的出来.下面我就总结一些比较常用的方法: 一.文本的水平垂直居中: 1.水平居中: 是不是很开心?超级简单的问题,一个text-align:center 就搞定了.过过过... -------------------------------------下面看单行.多行文本的垂直居中------------------------------------- 2.垂直居中: 1).单行文本 <…
转:http://www.cnblogs.com/sns007/p/5790838.html 1,水平分割: 例:QQ的登录表.假设QQ的用户有100亿,如果只有一张表,每个用户登录的时候数据库都要从这100亿中查找,会很慢很慢.如果将这一张表分成100份,每张表有1亿条,就小了很多,比如qq0,qq1,qq1...qq99表. 用户登录的时候,可以将用户的id%100,那么会得到0-99的数,查询表的时候,将表名qq跟取模的数连接起来,就构建了表名.比如123456789用户,取模的89,那么…
目前很多互联网系统都存在单表数据量过大的问题,这就降低了查询速度,影响了客户体验.为了提高查询速度,我们可以优化sql语句,优化表结构和索引,不过对那些百万级千万级的数据库表,即便是优化过后,查询速度还是满足不了要求.这时候我们就可以通过分表降低单次查询数据量,从而提高查询速度,一般分表的方式有两种:水平拆分和垂直拆分,两者各有利弊,适用于不同的情况. 水平拆分 水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放. 这里写图片描述  通常情况…
前言 CSS视觉格式化这个词可能比较陌生,但说起盒模型可能就恍然大悟了.实际上,盒模型只是CSS视觉格式化的一部分.视觉格式化分为块级和行内两种处理方式.理解视觉格式化,可以确定得到的效果是应该显示的正确效果,还是浏览器兼容性的bug. 基本概念 [基本框] CSS假定每个元素都会生成一个或多个矩形框,这称为元素框. 各元素框中心有一个内容区(content area). 这个内容区周围有可选的内边距.边框和外边距. 可以用多种属性设置外边距.边框和内边距.内容的背景也会应用到内边距.外边距通常…
http://www.cnblogs.com/sns007/p/5790838.html 1,水平分割: 例:QQ的登录表.假设QQ的用户有100亿,如果只有一张表,每个用户登录的时候数据库都要从这100亿中查找,会很慢很慢.如果将这一张表分成100份,每张表有1亿条,就小了很多,比如qq0,qq1,qq1...qq99表. 用户登录的时候,可以将用户的id%100,那么会得到0-99的数,查询表的时候,将表名qq跟取模的数连接起来,就构建了表名.比如123456789用户,取模的89,那么就到…
近端时间在面试,发现很多面试官或者面试都把数据的水平拆分合垂直拆分给搞混了,今天特意写了一篇博客来说说水平拆分和垂直拆分希望对程序猿们有所帮助. 数据库水平与垂直拆分: 垂直(纵向)拆分:是指按功能模块拆分,比如分为订单库.商品库.用户库...这种方式多个数据库之间的表结构不同. 水平(横向)拆分:将同一个表的数据进行分块保存到不同的数据库中,这些数据库中的表结构完全相同. 数据表的水平与垂直拆分: 垂直拆分:按字段功能主次拆分,比如最常见的商品表.商品图片表.商品详细信息...表与表之间的结构…