声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结.不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,因为本人在学习初始时有非常多数学知识都已忘记.所以为了弄懂当中的内容查阅了非常多资料,所以里面应该会有引用其它帖子的小部分内容.假设原作者看到能够私信我.我会将您的帖子的地址付到以下. 3,假设有内容错误或不准确欢迎大家指正. 4,假设能帮到你,那真是太好了. 介绍 CART是在给定输入变量X条件下,输出随机变量Y的条件概率分布的学习方法. CART如果决策树…
顾名思义,CART算法(classification and regression tree)分类和回归算法,是一种应用广泛的决策树学习方法,既然是一种决策树学习方法,必然也满足决策树的几大步骤,即:1特征的选择 2决策树的生成 3 决策树的剪枝 三大步骤,CART算法既可以用于分类还可以用于回归. CART是在给定输入随机变量X的条件下输出随机变量Y的条件概率分布的学习方法,CART 有个特性就是其假设决策树全部是二叉树,也就是说其结点只有两种选择,'是'和'否',说专业点就是决策树递归的二分…
相关博文: <机器学习实战>学习笔记第三章 —— 决策树 主要内容: 一.CART算法简介 二.分类树 三.回归树 四.构建回归树 五.回归树的剪枝 六.模型树 七.树回归与标准回归的比较 一.CART算法简介 1.对于上一篇博客所介绍的决策树,其使用的算法是ID3算法或者是C4.5算法,他们都是根据特征的所有取值情况来进行分割结点的.也正因如此,这两种算法都只能用于离散型的特征,而不能处理连续型的特征.为了解决这个问题,我们使用二元切分法来对连续型的特征进行处理,所谓二元切分法,其实就是一个…
一.决策树分类算法概述     决策树算法是从数据的属性(或者特征)出发,以属性作为基础,划分不同的类.例如对于如下数据集 (数据集) 其中,第一列和第二列为属性(特征),最后一列为类别标签,1表示是,0表示否.决策树算法的思想是基于属性对数据分类,对于以上的数据我们可以得到以下的决策树模型 (决策树模型) 先是根据第一个属性将一部份数据区分开,再根据第二个属性将剩余的区分开.     实现决策树的算法有很多种,有ID3.C4.5和CART等算法.下面我们介绍ID3算法. 二.ID3算法的概述…
CART(Classification And Regression Tree),分类回归树,,决策树可以分为ID3算法,C4.5算法,和CART算法.ID3算法,C4.5算法可以生成二叉树或者多叉树,CART只支持二叉树,既可支持分类树,又可以作为回归树. 分类树: 基于数据判断某物或者某人的某种属性(个人理解)可以处理离散数据,就是有限的数据,输出样本的类别 回归树: 给定了数据,预测具体事物的某个值:可以对连续型的数据进行预测,也就是数据在某个区间内都有取值的可能,它输出的是一个数值 CA…
目录 决策树CART算法 一.决策树CART算法学习目标 二.决策树CART算法详解 2.1 基尼指数和熵 2.2 CART算法对连续值特征的处理 2.3 CART算法对离散值特征的处理 2.4 CART算法剪枝 2.4.1 生成剪枝后的决策树 2.4.2 选择最优子树 2.5 CART算法剪枝流程 2.5.1 输入 2.5.2 输出 2.5.3 流程 三.决策树CART算法流程 3.1 输入 3.2 输出 3.3 分类CART树算法流程 3.4 回归CART树算法流程 3.4.1 处理连续值…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法. CART算法全称是Classification and regression tree,也就是分类回归树的意思.和之前介绍的ID3和C4.5一样,CART算法同样是决策树模型的一种经典的实现.决策树这个模型一共有三种实现方式,前面我们已经介绍了ID3和C4.5两种,今天刚好补齐这最后一种. 算法特点 CART称为分类回归树,从名字上我们也看得出来…
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? 一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. 女儿:是公务员不? 母亲:是,在税务局上班呢. 女儿:那好,我去见见. 决策过程: 这个女孩的决策过程就是典型的分类树决策.…
决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完全生长”决策树因为其简单直观,具有很强的解释性,也有广泛的应用,而且决策树是tree ensemble 的基础,值得好好理解.一般而言一棵“完全生长”的决策树包含,特征选择.决策树构建.剪枝三个过程,这篇文章主要是简单梳理比较ID3.C4.5.CART算法.<统计学习方法>中有比较详细的介绍. 一…
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.决策树(Decision Tree).口袋(Bagging),自适应增强(AdaBoost) Bagging和AdaBoost算法再分类的时候,是让所有的弱分类器同时发挥作用.它们之间的区别每个弱分离器是否对后来的blending生成G有相同的权重. Decision Tree是一种有条件的融合算法,每次只能根据条件让某个分类器发挥作用. 二.基本决策树算法 1.用递…