R语言缺点】的更多相关文章

R的优点:免费,开源,体积小.缺点:对大文本处理差,另外一个也在于开源,package如果出错,烦死你.当你跑比较大的simulation,对效率有要求的时候,有时还是不得不用C,这可能是10小时和10分钟的差别,毫不夸张.SAS流行于公司,R流行于研究机构和大学数据分析不是单纯的靠软件来做的,需要很好的数学基础. 统计学工具各有千秋.https://englianhu.wordpress.com/statistics/学了R,可以免去学spss,matalab,ucinet等等众多的软件,可以…
编码不友好,对中文不友好,逼着你用RStudio.Jupyter Notebook/Jupyter Lab.图标丑,每次点击感觉辣眼睛. 为节省内存,R语言计算默认有效数字为7位,比Excel的15位还坑,幸好可以用options(digit=20)调整.为节省内存,很多函数默认会把strings转为factor,部门.性别等转化尚能接受,姓名等转化不能接受. 严格区分等于.赋值.参数设置. 向量化,代码简洁,写起来爽.为统计而生,函数化,写起来快. 序号从1开始,方便排版报表.write.cs…
问题描述: 在R中使用多线程对数据库进行写入,在服务器端运行脚本(linux环境),总是在第6-7万个任务线程时,出现无法连接到数据库的问题.任务中断,错误信息为task 6xxxx failed,Can't connect to database. 而远程端在windows环境下执行时,却没有问题. 问题出现了很久,只所以动不起念头去解决,是隐约觉得问题出现在R语言工具包或linux操作系统底层的问题. 这两者都不是我能handle的领域.即使花了极大精力去定位问题,定位到了我也未必能解决.…
1. 系统拓扑图 在日常业务分析中,R是非常常用的分析工具,而当数据量较大时,用R语言需要需用更多的时间来完成训练模型,spark作为大规模数据处理框架,采用内存计算,可以短时间内完成大量的数据的处理及计算模型,但缺点是不能图形展示,R语言的sparkly则提供了R语言和Spark的接口,实现了在数据量大的情况下,应用Spark的快速数据分析和处理能力结合R语言的图形化展示功能,方便业务分析,模型训练. 但是要想使多人同时共享R和Spark,还需要其他的相关组件,下图展示了所有相关的组件及应用:…
本文在Creative Commons许可证下发布. 在fedora Linux上断断续续使用R语言过了9年后,发现R语言在国内用的人逐渐多了起来.由于工作原因,直到今年暑假一个赴京工作的机会与一位统计专业的人士聊天,才知道R语言的强大威力!(当然这里没有贬低SPSS, SAS,Stata的意思). R语言是用于统计分析.绘图的语言和操作环境.R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具.它是统计领域广泛使用的诞生于 1980年左右的 S 语言的…
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵…
一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264                  222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于255小时? 解:按题意,需检验 H0: μ ≤ 225     H1: μ >  225 此问题属于单边检验问题 可以使用R语言t.test t.test(x,y=N…
版权声明:本文为博主原创文章,转载请注明出处   机器学习的研究领域是发明计算机算法,把数据转变为智能行为.机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有价值的东西. 机器学习一般步骤 收集数据,将数据转化为适合分析的电子数据 探索和准备数据,机器学习中许多时间花费在数据探索中,它要学习更多的数据信息,识别它们的微小差异 基于数据训练模型,根据你要学习什么的设想,选择你要使用的一种或多种算法 评价模型的性能,需要依据一定的检验标准 改进模型的性能,有…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的假设前提有两个第一个为:各特征彼此独立:第二个为且对被解释变量的影响一致,不能进行变量筛选.但是很多情况这一假设是无法做到的,比如解决文本分类时,相邻词的关系.近义词的关系等等.彼此不独立的特征之间的关系没法通过朴素贝叶斯分类器训练得到,同时这种不独立性也给问题的解决方案引入了更多的复杂性[1].…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 线性混合模型与普通的线性模型不同的地方是除了有固定效应外还有随机效应. 笔者认为一般统计模型中的横截面回归模型中大致可以分为两个方向:一个是交互效应方向(调节.中介效应).一个是随机性方向(固定效应.随机效应). 两个方向的选择需要根据业务需求: 交互效应较多探究的是变量之间的网络关系,可能会有很多变量,多变量之间的关系: 而随机性探究的是变量…