python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share   预测变量线性检验 当构建一个二元分类器时,很多实践者会立即跳转到逻辑回归,因为它很简单.但是,很多人也忘记了逻辑回归是一种线性模型,预测变量间的非线性交互需要手动编…
案例1:使用逻辑回归模型,预测客户的信用评级 数据集中采用defect为因变量,其余变量为自变量 1.加载包和数据集 library(pROC) library(DMwR)model.df <- read.csv('E:\\Udacity\\Data Analysis High\\R\\R_Study\\高级课程代码\\数据集\\第一天\\4信用评级\\customer defection data.csv',sep=',',header=T 2.查看数据集, dim(model.df) hea…
原文地址: Logistic Regression vs Decision Trees vs SVM: Part II 在这篇文章,我们将讨论如何在逻辑回归.决策树和SVM之间做出最佳选择.其实 第一篇文章已经给出了很好的回答,不过在这里再补充一些.下面将继续深入讨论这个主题.事实上,这三个算法在其设计之初就赋予了一定的内部特性,我们将其分析透彻的主要目的在于:当你面临商业问题时,这些算法的特性可以让你在选择这些算法时得到一些灵感. 首先,我们来分析下逻辑回归(Logistic Regressi…
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 参考资料 https://www.cnblogs.com/webRobot/p/9034079.html 逻辑回归重点: 1.sigmoid函数(…
作者:寒小阳 && 龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49797143 http://blog.csdn.net/longxinchen_ml/article/details/49798139 声明:版权所有,转载请联系作者并注明出处,谢谢. 1.引言 先说一句,年末双十一什么的一来,真是非(mang)常(cheng)欢(gou)乐(le)!然后push自己抽出时间来写这篇blog的…
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足,均值为0的高斯分布,即正态分布.这个假设是靠谱的,符合一般客观统计规律.若使 模型与测量数据最接近,那么其概率积就最大.概率积,就是概率密度函数的连续积,这样,就形成了一个最大似然函数估计.对最大似然函数估计进行推导,就得出了推导后结果: 平方和最小公式 注: 1.x的平方等于x的转置乘以x. 2…
正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas as pd #数据分析 import numpy as np #科学计算 from pandas import Series,DataFrame data_train = pd.read_csv("/Users/Hanxiaoyang/Titanic_data/Train.csv") da…
机器学习系列(3)_逻辑回归应用之Kaggle泰坦尼克之灾 标签: 机器学习应用 2015-11-12 13:52 3688人阅读 评论(15) 收藏 举报 本文章已收录于:  机器学习知识库  分类: 机器学习(19)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   作者:寒小阳 && 龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49797143 http:…
出处:http://blog.csdn.net/han_xiaoyang/article/details/49797143 2.背景 2.1 关于Kaggle 我是Kaggle地址,翻我牌子 亲,逼格这么高的地方,你一定听过对不对?是!这就是那个无数『数据挖掘先驱』们,在回答”枪我有了,哪能找到靶子练练手啊?”时候的答案! 这是一个要数据有数据,要实际应用场景有场景,要一起在数据挖掘领域high得不要不要的小伙伴就有小伙伴的地方啊!!! 艾玛,逗逼模式开太猛了.恩,不闹,不闹,说正事,Kaggl…
数据说明 本数据是一份汽车贷款违约数据 application_id    申请者ID account_number 账户号 bad_ind            是否违约 vehicle_year      汽车购买时间 vehicle_make     汽车制造商 bankruptcy_ind 曾经破产标识 tot_derog           五年内信用不良事件数量(比如手机欠费消号) tot_tr                  全体账户数量 age_oldest_tr     最久…