第一部分:分析篇 首先,看一下zico的页面,左侧是hostname panel,右侧是该主机对应的traces panel. 点击左侧zorka主机名,右侧panel会更新信息,在火狐浏览器中使用firebug插件我们可以看到请求的URL. 其中关键是第二条:/traces/search 根据/traces/search这个URL我们试着在代码中找找线索.可以看到TraceDataService类有@Path("/traces")注解,而其方法searchTraces上有 @Path…
首先介绍数据读取问题,现在TensorFlow官方推荐的数据读取方法是使用tf.data.Dataset,具体的细节不在这里赘述,看官方文档更清楚,这里主要记录一下官方文档没有提到的坑,以示"后人".因为是记录踩过的坑,所以行文混乱,见谅. I 问题背景 不感兴趣的可跳过此节. 最近在研究ENAS的代码,这个网络的作用是基于增强学习,能够自动生成合适的网络结构.原作者使用TensorFlow在cifar10上成功自动生成了网络结构,并取得了不错的效果. 但问题来了,此时我需要将代码转移…
前面我们用Tensorboard显示了tensorflow的程序结构,本节主要用Tensorboard显示各个参数值的变化以及损失函数的值的变化. 这里的核心函数有: histogram 例如: tf.summary.histogram(layer_name + "/weights", Weights) 这里用tf.summary.histogram函数来显示二维数据在不同网络层的变化情况,其中第一个参数是名字,可以用/来进行分层显示,第二个参数就是相应变量的值. scalar tf.…
Tensorflow中之前主要用的数据读取方式主要有: 建立placeholder,然后使用feed_dict将数据feed进placeholder进行使用.使用这种方法十分灵活,可以一下子将所有数据读入内存,然后分batch进行feed:也可以建立一个Python的generator,一个batch一个batch的将数据读入,并将其feed进placeholder.这种方法很直观,用起来也比较方便灵活jian,但是这种方法的效率较低,难以满足高速计算的需求. 使用TensorFlow的Queu…
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorch系列(二) - PyTorch数据读取 PyTorch系列(三) - PyTorch网络构建 PyTorch系列(四) - PyTorch网络设置 参考: PyTorch documentation PyTorch 码源 本文首先介绍了有关预处理包的源码,接着介绍了在数据处理中的具体应用: 其主要…
TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Visualization) 3. 数据的读取: 4. 线程和队列: 5. 分布式的TensorFlow: 6. 增加新的Ops: 7. 自定义数据读取: 由于各种原因,本人只看了前5个部分,剩下的2个部分还没来得及看,时间紧任务重,所以匆匆发车了,以后如果有用到的地方,再回过头来研究.学习过程中深感官方…
TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Visualization) 3. 数据的读取: 4. 线程和队列: 5. 分布式的TensorFlow: 6. 增加新的Ops: 7. 自定义数据读取: 由于各种原因,本人只看了前5个部分,剩下的2个部分还没来得及看,时间紧任务重,所以匆匆发车了,以后如果有用到的地方,再回过头来研究.学习过程中深感官方…
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于配置TensorFlow,官方已经说得很详细了,我这里就不啰嗦了.官方教程看这里:https://www.tensorflow.org/get_started/os_setup 如果安装了GPU版本的TensorFlow,还需要配置Cuda,关于Cuda安装看这里:https://www.tenso…
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于配置TensorFlow,官方已经说得很详细了,我这里就不啰嗦了.官方教程看这里:https://www.tensorflow.org/get_started/os_setup 如果安装了GPU版本的TensorFlow,还需要配置Cuda,关于Cuda安装看这里:https://www.tenso…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train,用来保存训练时的日志logs,继续在/home/your_name/TensorFlow/cifar10/ cifar10.py中输入如下代码: def train(): # global_step global_step = tf.Variable(0, name = 'global_step'…
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train,用来保存训练时的日志logs,继续在/home/your_name/TensorFlow/cifar10/ cifar10.py中输入如下代码: def train(): # global_step global_step = tf.Variable(0, name = 'global_step'…
一.深度学习与深层神经网络 深层神经网络是实现“多层非线性变换”的一种方法. 深层神经网络有两个非常重要的特性:深层和非线性. 1.1线性模型的局限性 线性模型:y =wx+b 线性模型的最大特点就是任意线性模型的组合仍然还是线性模型. 如果只通过线性变换,任意层的全连接神经网络和单层神经网络模型的表达能力没有任何的区别,它们都是线性模型.然而线性模型能够解决的问题是有限的. 如果一个问题是线性不可分的,通过线性模型就无法很好的去分类这些问题. 1.2激活函数实现去线性化 神经元的输出为所有输入…
一.Tensorflow 扩展功能 1.自动求导 2.子图的执行 3.计算图控制流 4.队列/容器 Tensorflow 自动求导 当计算tensor C关于tensor W的梯度时,会先寻找从W到C的正向路径,然后从C回溯到W,对这条回溯路径上的每一个节点增加一个对应的求解梯度的节点,根据链式法则计算总的梯度.这就是反向传播算法.这些新增的节点会计算梯度函数,比如[db,dW,dx]=tf.gradients(C,[b,w,x]) 自动求导虽然对用户很方便,但伴随而来的是Tensorflow对…
本文翻译自www.tensorflow.org的英文教程. tf.data 模块包含一组类,可以让你轻松加载数据,操作数据并将其输入到模型中.本文通过两个简单的例子来介绍这个API 从内存中的numpy数组读取数据. 从csv文件中读取行 基本输入 对于刚开始使用tf.data,从数组中提取切片(slices)是最简单的方法. 笔记(1)TensorFlow初上手里提到了训练输入函数train_input_fn,该函数将数据传输到Estimator中: def train_input_fn(fe…
一:创建TensorFlow工作环境目录 1. 在anconda安装目录下找到envs目录然后进入 2. 在当前目录下创建一个文件夹改名为tensorflow 二: 创建TensorFlow工作环境 1. 按下win+R键打开命令行 2. 输入conda create --name tensorflow python=3.5:然后回车 3. 接下来系统提示是否安装,输入y回车 4. 工作环境创建完成 三:安装TensorFlow 1. 使用命令activate tensorflow 切换到ten…
实现方式 以 ℓ2 Regularization 为例,主要有两种实现方式 1. 手动累加 with tf.name_scope('loss'): loss = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=logits) # label is one_hot l2_reg_loss = tf.constant(0.0, tf.float32) for vv in tf.trainable_variables(): if 'bn'…
本文整理了TensorFlow中的数据读取方法,在TensorFlow中主要有三种方法读取数据: Feeding:由Python提供数据. Preloaded data:预加载数据. Reading from files:从文件读取. Feeding 我们一般用tf.placeholder节点来feed数据,该节点不需要初始化也不包含任何数据,我们在执行run()或者eval()指令时通过feed_dict参数把数据传入graph中来计算.如果在运行过程中没有对tf.placeholder节点传…
TensorFlow高效读取数据的方法 TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取 Tensorflow从文件读取数据 极客学院-数据读取 十图详解TensorFlow数据读取机制(附代码) http://geek.csdn.net/news/detail/201552 在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最…
人工智能已经成为了目前的大趋势,作为程序员的我们也应该跟着时代进步.Tensorflow作为人工智能领域的重要工具,被广泛的使用在机器学习的应用当中. Tensorflow使用人数众多.社区完善,所以我们可以把学习Tensorflow作为接触人工智能的第一步,闲话不多说,我们进入正题! 本套系列课程旨在记录我学习Tensorflow的过程,我会用更简洁的语言来与大家分享我的学习心得,所有文章我都会不间断的更新完善,文章中有不正确的地方,请大家指正,共同学习! 一.安装Python 安装Pytho…
一.mnist数据 深度学习的入门实例,一般就是mnist手写数字分类识别,因此我们应该先下载这个数据集. tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们直接调用就可以了,代码如下: import tensorflow.examples.tutorials.mnist.input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 执行完成后,会在当前目录下…
前边的章节介绍了什么是Tensorflow,本节将带大家真正走进Tensorflow的世界,学习Tensorflow一些基本的操作及使用方法.同时也欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! Tensorflow是一种计算图模型,即用图的形式来表示运算过程的一种模型.Tensorflow程序一般分为图的构建和图的执行两个阶段.图的构建阶段也称为图的定义阶段,该过程会在图模型中定义所需的运算,每次运算的的结果…
本文同时也发布在自建博客地址. 本文翻译自www.tensorflow.org的英文教程. 本文档介绍了TensorFlow编程环境,并向您展示了如何使用Tensorflow解决鸢尾花分类问题. 先决条件 在本文档中使用示例代码之前,您需要执行以下操作: 确认安装了Tensorflow 如果在Anaconda的虚拟环境下安装了TF,激活你的TF环境 通过以下命令安装或者升级pandas pip install pandas ​ 获取示例代码 按照以下步骤获取我们将要全程使用的示例代码 通过输入以…
本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考. 一.tensorflow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的…
一.资料 参考原文: TensorFlow全新的数据读取方式:Dataset API入门教程 API接口简介: TensorFlow的数据集 二.背景 注意,在TensorFlow 1.3中,Dataset API是放在contrib包中的: tf.contrib.data 而在TensorFlow 1.4中,Dataset API已经从contrib包中移除,变成了核心API的一员: tf.data. 此前,在TensorFlow中读取数据一般有两种方法: 使用placeholder读内存中的…
一. LeNet-5 LeNet-5是一种用于手写体字符识别的非常高效的卷积神经网络. 卷积神经网络能够很好的利用图像的结构信息. 卷积层的参数较少,这也是由卷积层的主要特性即局部连接和共享权重所决定. LeNet-5共有7层,不包含输入,每层都包含可训练参数:每个层有多个Feature Map,每个FeatureMap通过一种卷积滤波器提取输入的一种特征,然后每个FeatureMap有多个神经元. 数据集:mnist train-images-idx3-ubyte 训练数据图像 (60,000…
Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dataset对象 # Select the dataset. # 'imagenet', 'train', tfr文件存储位置 # TFR文件命名格式:'voc_2012_%s_*.tfrecord',%s使用train或者test dataset = dataset_factory.get_datas…
在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考. 一.tensorflow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需…
转自:https://blog.csdn.net/lujiandong1/article/details/53376802 Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的. TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活.而Python恰好…