bzoj 3240 矩阵乘法+十进制快速幂】的更多相关文章

首先,构造出从f[][i]->f[][i+1]的转移矩阵a,和从f[i][m]->f[i+1][1]的转移矩阵b, 那么从f[1][1]转移到f[n][m]就是init*(a^(m-1)*b)^(n-1)*(a^(m-1)). 然后用用十进制快速幂(因为输入用的是10进制,这样就避免了高精度除法). 第一次写十进制快速幂,大概的思想是维护当前位是1-9的要乘的矩阵,然后再通过这9个矩阵自己转移. /************************************************…
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 613  Solved: 256[Submit][Status] Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式: F[1][1]=1F[i,j]=a*F[i][j-1]+…
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 Output 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 Sample Input 2 1 1 1 1 1 Sample Output 1 1 1 1 Http Luogu:https://www.luogu.org/prob…
Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每天每个该细胞可以分裂出 x − 1 个新的细胞. 小 X 决定第 i 天向培养皿中加入 i 个细胞(在实验开始前培养皿中无细胞). 现在他想知道第 n 天培养皿中总共会有多少个细胞. 由于细胞总数可能很多,你只要告诉他总数对 w 取模的值即可. Input 第一行三个正整数 n, x,w Outpu…
Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7825   Accepted: 3068 Description For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout…
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 2057    Accepted Submission(s): 954 Problem Description One day, Alice and Bob…
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 第一眼以为是组合.然后更滑稽的是用错误的方法手算样例居然算出来是对的...我数学是有多差... 题解也是看了好半天,有点难理解. 感觉PoPoQQQ神犇讲得还是比较清楚的.传送门:http://blog.csdn.net/popoqqq/article/details/40188173 我们用dp[…
题意:f[1]=a,f[2]=b,f[i]=2f[i-2]+f[i-1]+i^4(i>=3),多组询问求f[n]对2147493647取模 N,a,b < 2^31 思路:重点在于i^4的处理 对于i转移矩阵中可以记录下它的0,1,2,3,4次项 i的幂又可以由i-1的幂运算得出,最后推出的系数是二项式展开的系数 试试新的矩乘模板 #include<cstdio> #include<cstring> #include<string> #include<…
题目 已知 $x_i = ax_i + bx_{i-1}$,求 $x_n \% MOD$.($1\leq n\leq 10^{(10^6)}$) 分析 写成矩阵快速幂的形式,相当于求转移矩阵的 $n$ 次幂. 由于 $n$ 过大,只能用字符串形式保存,如果转成二进制复杂度过高,就直接用十进制好了. 其实十进制快速幂和二进制几乎一样,都是倍增的思想. ll qpow(ll a, ll b, ll p) { ll ret = ; while(b) { ) ret = ret*a%p; a = a*a…
思路: 十进制快速幂. #include <stdio.h>//sprintf #include <cstdlib>////malloc exit strcat itoa system("cls") #include <iostream>//pair #include <fstream> #include <bitset> //#include <map> https://ac.nowcoder.com/acm/c…