理解metrics.classification_report】的更多相关文章

混淆矩阵是一个矩阵,类别个数可以有多个,a[i][j]表示将类别i的样本误判为类别j的个数. classification_report用来分析不同类别的准确率,召回率,F1值等,从而便于按照类别查看准确率.召回率. 总体的正确率跟classification_report中的正确率是不一样. import numpy as np import sklearn.metrics as metrics def report(mine, real): if len(mine) != len(real)…
sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息. 主要参数: y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值. y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值. labels:array,shape = [n_labels],报表中包含的标签索引的可选列表. target_names:字符串列表,与标签匹配的可选显示名称(相同顺序). sample_weight:…
classification_report的调用为:classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, output_dict=False) y_true : 真实值y_pred : 预测值 from sklearn.metrics import classification_report truey = np.array([0,0,1,1,0,0]…
使用说明 参数 sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, output_dict=False) y_true:1 维数组,真实数据的分类标签 y_pred:1 维数组,模型预测的分类标签 labels:列表,需要评估的标签名称 target_names:列表,指定标签名称 sample_weight:1 维数…
林牧 SA16222166 课程目标 课程安排 A1a A2 A3 项目集成 环境搭建 其他方面的收获 本课心得 课程目标 通过实现一个医学辅助诊断的专家系统原型,具体为实现对血常规检测报告OCR识别结果,预测人物的年龄和性别,学习机器学习的常见算法,重点分析神经网路,理解和掌握常用算法的使用. 课程安排 A1a 神经网络实现手写字符识别系统 A2 血常规检验报告的图像OCR识别 A3 根据血常规检验的各项数据预测年龄和性别 Pull Request A1a 该项目属于神经网络中的"Hello…
原文:http://www.cnblogs.com/taceywong/p/4568806.html 原文地址:http://scikit-learn.org/stable/tutorial/basic/tutorial.html翻译:Tacey Wong 概要:该章节,我们将介绍贯穿scikit-learn使用中的"机器学习(Machine Learning)"这个词汇,并给出一些简单的学习示例. 一.机器学习:问题设定 通常,一个学习问题是通过分析一些数据样本来尝试预测未知数据的属…
学完了Coursera上Andrew Ng的Machine Learning后,迫不及待地想去参加一场Kaggle的比赛,却发现从理论到实践的转变实在是太困难了,在此记录学习过程. 一:安装Anaconda 教程大多推荐使用Jupyter Notebook来进行数据科学的相关编程,我们通过Anaconda来安装Jupyter Notebook和需要用到的一些python库,按照以下方法重新安装了Anaconda,平台Win10 Anaconda安装 二:Jupyter Notebook 参照以下…
http://blog.csdn.net/pipisorry/article/details/52250760 模型评估Model evaluation: quantifying the quality of predictions 3 different approaches to evaluate the quality of predictions of a model: Estimator score method: Estimators have a score method prov…
Examples of Scikit-learn Usages KFold K-折交叉验证 >>> import numpy as np >>> from sklearn.model_selection import KFold >>> X = ["a", "b", "c", "d"] >>> kf = KFold(n_splits=2) >>…
https://mlnote.wordpress.com/2015/12/16/python%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E8%B7%B5%E4%B8%8Ekaggle%E5%AE%9E%E6%88%98-machine-learning-for-kaggle-competition-in-python/ Author: Miao Fan (范淼), Ph.D. candidate on Computer Science. Affil…