白*衡(Color Constancy,无监督AWB):CVPR2019论文解析 Quasi-Unsupervised Color Constancy 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/Bianco_Quasi-Unsupervised_Color_Constancy_CVPR_2019_paper.pdf 摘要 本文提出了一种计算颜色恒常性的方法,即训练一个深卷积神经网络来检测彩色图像中转换成灰度后的消色差像…
将视频插入视频:CVPR2019论文解析 Inserting Videos into Videos 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/Lee_Inserting_Videos_Into_Videos_CVPR_2019_paper.pdf 摘要 在本文中,本文引入了一个新的问题,即通过插入其他视频来操作给定的视频.本文的主要任务是,给定一个对象视频和一个场景视频,在场景视频中用户指定的位置插入对象视频,以使生成…
全景分割:CVPR2019论文解析 Panoptic Segmentation 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/Kirillov_Panoptic_Segmentation_CVPR_2019_paper.pdf For results: https://arxiv.org/abs/1801.00868. 摘要 本文提出并研究了一个称为全景分割(PS)的任务.全景分割是典型的语义分割(为每个像素指定一个类标签…
2.5D Visual Sound:CVPR2019论文解析 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/Gao_2.5D_Visual_Sound_CVPR_2019_paper.pdf Video results: http://vision.cs. utexas.edu/projects/2.5D_visual_sound/ 摘要 双耳音频为听者提供了3D的声音感受,使其对场景有丰富的感知体验.然而,双耳录音几乎不…
深度学习白平衡(Color Constancy,AWB):ICCV2019论文解析 What Else Can Fool Deep Learning? Addressing Color Constancy Errors on Deep Neural Network Performance 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Afifi_What_Else_Can_Fool_Deep_Learning_Addres…
原文链接:http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andrew NG的深度学习教程: Li feifei的CNN教程: caffe官网的教程: 对比过这几份资料,突然间产生一个困惑:台大和Andrew的教程中用了很大的篇幅介绍了无监督的自编码神经网络,但在Li feifei的教程和caffe的实现中几乎没有涉及.当时一直搞不清这种现象的原因,直到…
词义消歧,句子.篇章语义理解基础,必须解决.语言都有大量多种含义词汇.词义消歧,可通过机器学习方法解决.词义消歧有监督机器学习分类算法,判断词义所属分类.词义消歧无监督机器学习聚类算法,把词义聚成多类,每一类一种含义. 有监督词义消歧方法.基于互信息词义消歧方法,两种语言对照,基于大量中英文对照语料库训练模型可词义消歧.来源信息论,一个随机变量中包含另一个随机变量信息量(英文信息中包含中文信息信息量),假设两个随机变量X.Y的概率分别是p(x), p(y),联合分布概率是p(x,y),互信息计算…
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异常值定义为与其余数据群1不一致的样本或事件.异常值通常包含有关影响数据生成过程2的系统和实体的异常特征的有用信息. 异常检测算法的常见应用包括: 入侵检测系统信用卡诈骗有趣的传感器事件医学诊断在本文中,我们将重点介绍异常检测 - 信用卡欺诈的最常见应用之一.通过一些简单的离群值检测方法,可以在真实世…
1. 引言 word embedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展.既然词可以embedding,句子也应该可以(其实,万物皆可embedding,Embedding is All You Need ^_^).近年来(2014-2018),许多研究者在研究如何进行句子表示学习,从而获得质量较高的句子向量(sentence embedding).事实上,sentence embedding在信息检索,句子匹配,句子分类等任务上均有广泛应用,并…
http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andrew NG的深度学习教程: Li feifei的CNN教程: caffe官网的教程: 对比过这几份资料,突然间产生一个困惑:台大和Andrew的教程中用了很大的篇幅介绍了无监督的自编码神经网络,但在Li feifei的教程和caffe的实现中几乎没有涉及.当时一直搞不清这种现象的原因,直到翻阅了深度…