首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
哈工大LTP基本使用-分词、词性标注、依存句法分析、命名实体识别、角色标注
】的更多相关文章
哈工大LTP基本使用-分词、词性标注、依存句法分析、命名实体识别、角色标注
代码 import os from pprint import pprint from pyltp import Segmentor, Postagger, Parser, NamedEntityRecognizer, SementicRoleLabeller class LtpParser: def __init__(self): LTP_DIR = "../model/ltp_data_v3.4.0/" self.segmentor = Segmentor() # load_wit…
学习笔记CB007:分词、命名实体识别、词性标注、句法分析树
中文分词把文本切分成词语,还可以反过来,把该拼一起的词再拼到一起,找到命名实体. 概率图模型条件随机场适用观测值条件下决定随机变量有有限个取值情况.给定观察序列X,某个特定标记序列Y概率,指数函数 exp(∑λt+∑μs).符合最大熵原理.基于条件随机场命名实体识别方法属于有监督学习方法,利用已标注大规模语料库训练. 命名实体的放射性.命名实体的前后词. 特征模板,当前位置前后n个位置字/词/字母/数字/标点作为特征,基于已经标注好语料,词性.词形已知.特征模板选择和具体识别实体类别有关. 命名…
使用哈工大LTP进行文本命名实体识别并保存到txt
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/broccoli2/article/details/84025285需求说明:(1)将计算机本地文档集中的文本进行分词.词性标注,最后进行命名实体识别.(2)将(1)中处理结果保存到本地txt文件中. 技术选择:本需求的实现使用了哈工大的pyltp,如果你对ltp还不太了解,请点击这里或者去哈工大语言云官网了解相关内容. 完整代码展示: #…
HMM(隐马尔科夫模型)与分词、词性标注、命名实体识别
转载自 http://www.cnblogs.com/skyme/p/4651331.html HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,举一个经典的例子:一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步.昨天购物.今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气.在这个例子里,显状态是活动,隐状态是天气. HMM描述 任何一个HMM都可以通过下列五元组来描述:…
HMM与分词、词性标注、命名实体识别
http://www.hankcs.com/nlp/hmm-and-segmentation-tagging-named-entity-recognition.html HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,举一个经典的例子:一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步.昨天购物.今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气.在这个例子里,显状态是活…
PyTorch 高级实战教程:基于 BI-LSTM CRF 实现命名实体识别和中文分词
前言:译者实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享. 具体的数据格式,这种方式并不适合处理很多的数据,但是对于 demo 来说非常友好,把英文改成中文,标签改成分词问题中的 "BEMS" 就可以跑起来了. # Make up some training data training_data = [( "the wall street journal reported…
ZH奶酪:哈工大LTP云平台标记含义及性能
从官网搬过来的 囧rz 哈工大讯飞语言云 由哈工大 和科大讯飞 联合研发的中文自然语言处理云服务平台.结合了哈工大“语言技术平台——LTP” 高效.精准的自然语言处理核心技术和讯飞公司在全国性大规模云计算服务方面的 丰富经验,显著提升 LTP 对外服务的稳定性和吞吐量,为广大用户提供电信级稳定 性和支持全国范围网络接入的语言云服务,有效支持包括中小企业在内开发者的商 业应用需要. 作为基于云端的服务,语言云具有如下一些优势: 免安装:用户无需调用静态库或下载模型文件,只需要根据API参数集构造H…
HanLP分词命名实体提取详解
HanLP分词命名实体提取详解 分享一篇大神的关于hanlp分词命名实体提取的经验文章,文章中分享的内容略有一段时间(使用的hanlp版本比较老),最新一版的hanlp已经出来了,也可以去看看新版的hanlp在这方面有何提升! 文本挖掘是抽取有效.新颖.有用.可理解的.散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程.对于文本来说,由于语言组织形式各异,表达方式多样,文本里面提到的很多要素,如人名.手机号.组织名.地名等都称之为实体.在工程领域,招投标文件里的这些实体信息至…
nlp 总结 分词,词义消歧,词性标注,命名体识别,依存句法分析,语义角色标注
分词 中文分词 (Word Segmentation, WS) 指的是将汉字序列切分成词序列. 因为在汉语中,词是承载语义的最基本的单元.分词是信息检索.文本分类.情感分析等多项中文自然语言处理任务的基础. 例如,句子 国务院总理李克强调研上海外高桥时提出,支持上海积极探索新机制. 正确分词的结果是 国务院/ 总理/ 李克强/ 调研/ 上海/ 外高桥/ 时/ 提出/ ,/ 支持/ 上海/ 积极/ 探索/ 新/ 机制/ . 如果分词系统给出的切分结果是 国务院/ 总…
3. 哈工大LTP解析
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 哈工大语言技术平台Language Technology Platform(LTP)是哈工大社会计算与信息检索研究中心历时十年开发的一整套中文语言处理系统.LTP制定了基于XML的语言处理结果表示,并在此基础上提供了一整套自底向上的丰富而且高效的中文语言处理模块(包括词法.句法.语义等6项中文处理核心技术),以及基于动态链接库(Dynamic Link L…