6.17考试总结(NOIP模拟8) 背景 考得不咋样,有一个非常遗憾的地方:最后一题少取膜了,\(100pts->40pts\),改了这么多年的错还是头一回看见以下的情景... T1星际旅行 前言 考试的时候用一个自己感觉非常妙的思路骗了20pts,因为是双向边,所以分成两个边存,边的tot从2开始,这样可以保证没一组边的序号通过取\(xor\)可以相互转化. 然后对于每一个边记录经过次数,并且记一下经过次数为1和2的边的总数,然后对于dfs时转移的就是状压的每组边的状态,当然也可以拿Hash存…
也不能算考得好,虽然这次A了一道题,但主要是那道题太简单了,没啥成就感,而且有好多人都A掉了 除了那一道,其他的加起来一共拿了25pts,这我能咋办,无奈的去改题 整场考试的状态并不是很好啊,不知道是刚放假回来的原因还是昨天晚上没睡好, 考试的时候一直很困,那种睁不开眼的困,然后导致我这次考试前三个题,屁大点的思路都没有 所以还是要保养好精神的,毕竟还有这么多事 所以我下次考试要保持一个好的状态,然后拿最多的分::: 这次的考题思路极其怪癖,不对,是清奇!!!而且是想不到的清奇 正解:::: T…
T1 星际旅行 题意:n个点,m条边,无重边,有自环,要求经过m-2条边两次,2条边一次,问共有多少种本质不同的方案.本质不同:当且仅当至少存在一条边经过次数不同. 题解:考试的时候理解错题,以为他是一棵树,然后我就凉凉了...考试感觉今天T1怎么这么难,看了题解才发现这是一道水题. 只有两条边经过一次,其余都经过两次,考虑拆边,把每条边拆成两条,拆完之后每个点的度一定都是偶数,问题就变成了选择两条边删去,使剩下的图形成欧拉路. 删去的边可以有三种情况: 1>任意两条有公共顶点的边 2>任意两…
星际旅行 0分 瞬间爆炸. 考试的时候觉得这个题怎么这么难, 打个dp,可以被儿子贡献,可以被父亲贡献,还有自环,叶子节点连边可以贡献,非叶子也可以贡献,自环可以跑一回,自环可以跑两回, 关键是同一子树会贡献,不同子树也会贡献. 这还不是欧拉图欧拉路问题,awsl 然后我就放弃了这个题 考完试看题解,tm一个大水题 虽然好像不算水, 思考两个点之间因为连接的是无向边,所以所有点入度出度都为2. 先不考虑自环 如果把两个点之间无向边拆成两个有向边,那么问题就变成去掉两个边使原图存在欧拉路. 于是乎…
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取一棵深度为 k 的满二叉树,对每个节点向它的所有祖先连边(如果这条边不存在的话). 例如,下面是一个 4-超级树: 请统计一棵 k-超级树 中有多少条不同的简单有向路径,对 mod 取模. input 一行两整数 k, mod. output 一行一整数表示答案. example input1: 2…
描述 在2009的中国城市足球比赛中,在2^N支队中,有一些队在开赛前宣布了退出比赛.比赛采取的是淘汰赛.比如有4支队伍参加,那么1队和2队比赛,3队和4队赛,然后1队和2队的胜者与3队和4队的胜者争夺冠军.但是由于某些队伍退出,那么如果某个原本存在的比赛只有一个支队,那么这一支队自动晋级,如果没有队伍出现,那么就跟本没有比赛.比如,1队和2队退出比赛,那么就只有3队和4队的比赛,然后其胜者在原本和1队和2队的胜者的决赛中自动晋级,成为冠军. 给出哪些队退出的比赛计算会有多少场比赛中队伍自动晋级…
树状数组一个被发明以来广为流行的数据结构,基于数组,核心是lowerbit()操作.他向前lowerbit()操作为前缀,向后lowerbit()操作为上辖,我们运用树状数组都是使一个由O(1)变为O(log),一个由O(n)变为O(log),有两种类型一种是上辖修改前缀查询,典型的为前缀和,前缀最值,一种是前缀修改上辖查询,典型为前缀染色.其他的操作一般都是建立在他们的基础上或者与之类似.我们还可以把向前lowerbit()操作为上辖,向后lowerbit()操作为后缀,这样就可以把之前的前缀…
Description 小A和小B在玩游戏.这个游戏是这样的: 有一棵…
树形\(DP\) 实际上,这道题应该不是很难. 我们设\(f_{x,i,j}\)表示在以\(x\)为根的子树内,原本应输出\(i\),结果输出了\(j\)的情况数. 转移时,为了方便,我们先考虑与,再考虑非,即先转移,再交换\(f_{x,0,0}\)和\(f_{x,1,1}\),\(f_{x,1,0}\)和\(f_{x,0,1}\). 这样一来,转移方程如下: \[f_{x,i1\&i2,j1\&j2}=\sum f_{x,i1,j1}*f_{son,i2,j2}\] 然后,在转移结束,交…
这个题我在考试的时候把所有的转移都想全了就是新加一个点时有I.不作为II.自己呆着III.连一个IV.连接两个子树中的两个V连接一个子树中的两个,然而V我并不会转移........ 这个题的正解体现了一种神奇的思想,对于好合并但是不好转移的dp我们可以先打散然后合并到最后,所以我们从一开始维护f[i][j]表示i阶超级树中有j个互不相交的路径的方案数. #include <cstdio> typedef long long LL; LL f[][],mod,temp; int n; int m…