CNN介绍 与之前的神经网络不同之处在于,CNN明确指定了输入就是图像,这允许我们将某些特征编码到CNN的结构中去,不仅易于实现,还能极大减少网络的参数. 一. 结构概述 与一般的神经网络不同,卷积神经网络尤其特殊之处.一般的神经网络每一层与前一层之间采用全连接:一层中的神经元之间也是互相独立的,并不共享权值:最后一层全连接层陈伟输出层,在分类任务中出表示类别得分.CIFAR-10中图像是32*32*3=3072,所以,与输入相连的第一个隐层的每个神经元的参数都有3072个,如果图像尺寸更大,那…
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalization Layer Fully-Connected Layer Converting Fully-Connected Layers to Convolutional Layers ConvNet Architectures Layer Patterns Layer Sizing Patterns C…
http://cs231n.github.io/   里面有很多相当好的文章 http://cs231n.github.io/convolutional-networks/ Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalization Layer Fully-Connected Layer Converting Fully-Connected Laye…
Convolutional Neural Networks (CNNs / ConvNets) 前面做了如此漫长的铺垫,现在终于来到了课程的重点.Convolutional Neural Networks, 简称CNN,与之前介绍的一般的神经网络类似,CNN同样是由可以学习的权值与偏移量构成,每一个神经元接收一些输入,做点积运算加上偏移量,然后选择性的通过一些非线性函数,整个网络最终还是表示成一个可导的loss function,网络的起始端是输入图像,网络的终端是每一类的预测值,通过一个ful…
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/comment-page-4/?unapproved=31867&moderation-hash=1ac28e426bc9919dc1a295563f9c60ae#comment-31867 一.什么是卷积神经网络.为什么卷积神经网络很重要? 卷…
卷积神经网络(Convolutional Neural Networks/ CNN/ConvNets) 卷积神经网络和普通神经网络十分相似: 组成它们的神经元都具有可学习的权重(weights)和偏置(biases).每个神经元接受一些输入,执行一个点积操作,并且可能执行一个非线性函数最后得到该神经元的输出.整个网络仍然可以表示为一个可微评分函数.这个函数在一端输入图像的像素,在另一端得到某个类别的分数.同时卷积神经网络在做后一个层(fully-connected)上仍然具有损失函数--例如SV…
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky University of Toronto 多伦多大学 kriz@cs.utoronto.ca Ilya Sutskever University of Toronto 多伦多大学 ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toront…
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 Abstract摘要 We study characteristics of receptive fields of units in deep convolutional networks. The receptive field size is a crucial issue in many vis…
How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blog is from: https://towardsdatascience.com/how-to-use-convolutional-neural-networks-for-time-series-classification-56b1b0a07a57 Introduction A large am…
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ Posted on August 11, 2016 by ujjwalkarn What are Convolutional Neural Networks and why are they important? Convolutional Neural…