【知识总结】Polya 定理】的更多相关文章

我第一次听说 Polya 原理是 NOIP2017 以前,但我觉得太难想着以后再学: NOIP2018 以前我觉得会考这玩意,下定决心学,后来咕了: WC2019 以前我觉得会考这玩意,下定决心学,后来咕了: SNOI2019 以前我觉得会考这玩意,下定决心学,后来咕了: CTS2019 以前我觉得会考这玩意,下定决心学,后来咕了: APIO2019 以前我觉得会考这玩意,下定决心学,后来咕了: THUSC2019 以前我觉得会考这玩意,下定决心学,后来咕了: 今天距离 NOI2019 还有不到…
http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置换群就是元素为置换的群. 再看 Polya入门  涨涨姿势. Burnside定理,在每一种置换群也就是等价群中的数量和除以置换群的数量,即非等价的着色数等于在置换群中的置换作用下保持不变的着色平均数. Polya定理:设 是n个对象的一个置换群, 用m种颜色染图这n个对象,则不同的染色方案数为:…
题目大意 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和边集能完全与b图一一对应. 题解 这个题是学习了Polya定理和群论以后的练手题,但是推了好久并没有推出来....真的是太难辣... 首先我先说一下我错误的想法: 很容易就把这个题转化成了给\(K_n\)的完全图上的边进行二着色的问题,然后,由于在组合数学课程中经常接触到多边形着色,所以我就把这个题错误的转化成了…
最近,研究了两天的Burnside引理和Polya定理之间的联系,百思不得其解,然后直到遇到下面的问题: 对颜色限制的染色 例:对正五边形的三个顶点着红色,对其余的两个顶点着蓝色,问有多少种非等价的着色? 其中置换的方法有旋转 \(0^{\circ}, 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}\), 穿过一个点做对称轴进行翻转. Burnside引理的证明 那么,在解决这个问题之间,我们首先要定义和证明一些东西: 在集合\(X\)的置换群…
感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运算"$*$",并满足 (1).封闭性:$\forall a, b \in G, \exists c \in G, a * b = c$ (2).结合律:$\forall a, b, c \in G, (a * b) * c = a * (b * c)$ (3).单位元:$\exists e…
题目链接:http://poj.org/problem?id=2409 题意: 有一串n个珠子穿起来的项链,你有k种颜色来给每一个珠子染色. 问你染色后有多少种不同的项链. 注:“不同”的概念是指无论怎样旋转或翻转项链,都与之前的不同. 题解: 本题用到了置换的相关知识: (1)Burnside引理: 等价类数目 = 所有C(f)的平均值 (C(f)为置换f的不动点数目) (2)置换f可以分解成m(f)个循环的乘积,假设涂k种颜色: C(f) = k^m(f) (3)Polya定理:(综上) 等…
本文是一个笨比学习组合数学的学习笔记,因为是笨比,所以写的应该算是很通俗易懂了. 首先,我们考虑这么一个问题:你有无穷多的\(p\)种颜色的珠子,现在你想要的把他们中的\(n\)个以圆形的形状等间距的黏在一个可以旋转的圆盘上,求方案数. 然后,该问题的答案是 \(\frac{1}{n}\Sigma_{d|n}\phi(\frac{n}{d})p^d\) ,之中\(\phi()\)表示欧拉函数,下面解释一下为什么会出现这样一个数论函数. 首先,我们来复习一下polya定理:设一个序列上定义了一置换…
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合,G为Sn的置换群,C为Sn的着色集.那么我们等于是要求C中有多少种着色方案是不等价的.定义两种着色等价的概念:如果对于在C中的两种着色c1.c2,存在置换f使得f*c1=c2,那么c1和c2就是等价的.要想求不等价着色的个数,我们要先证明一个定理,即:         Burnside定理:设G(c…
对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不能旋转重复就称之为本质不同) 输入样例:4 输出样例:6 那么要怎么办呢?暴力显然暴不出来…… 我们可以考虑使用置换群. 我们有两种算法: ①Burnside引理: 答案直接为1/|G|*(D(a1)+D(a2)+D(a3)+……+D(as)) 其中D(ak)为在进行置换群置换操作ak下不变的元素的…
小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷砖的正.反两面都必须漆成同样的颜色. 有一天小可可突发奇想,觉得有必要试试看这些瓷砖究竟能够漆成多少种本质不同的图案.所谓两种图案本质不同就是其中的一种图案无论如何旋转.或者翻转.或者同时旋转和翻转都不能得到另外一种图案. 旋转是将瓷砖三角形整体顺时针旋转120度或240度. 翻转是将瓷砖三角形整体…