给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后的s行, 每行有两个整数n,m. 输出 输出m的个数. 样例输入 100 5 16 2 样例输出 /*给定两个数m,n 求m!分解质因数后因子n的个数. 这道题涉及到了大数问题,如果相乘直接求的话会超出数据类型的范围. 下面给出一种效率比较高的算法,我们一步一步来. m!=1*2*3*……*(m-2)*(m-…
/* 要求出[1,R]之间的质数会超时,但是要判断[L,R]之间的数是否是素数却不用筛到R 因为要一个合数n的最大质因子不会超过sqrt(n) 所以只要将[2,sqrt(R)]之间的素数筛出来,再用这些素数去筛[L,R]之间的合数即可 */ #include<iostream> #include<cstring> #include<cstdio> #include<cmath> using namespace std; #define ll long lon…
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8"> <title></title> <script type="text/javascript" src="jquery.min.js"></script> <script type="text/…
n<=10^6 m<=10^6 p=2^32 用unsigned int 可以避免取模 我写的SB超时 阶乘分解代码 #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <ctime> #include <algorithm> #include <iostream> #include <sstr…
题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可以因式分解?!于是$$N!^2 - (x + y)N! + xy = N!^2$$,即$$(x-N!)(y-N!)=N!^2$$.令$A=x-N!,B=y-N!$,则原式变为$$A*B=(N!)^2$$.因此,解的个数便是$N!^2$的因子的个数.根据唯一分解定理,任意的正整数都可分解为$\prod…
n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0. 收起   输入 一个数N(1 <= N <= 10^9) 输出 输出0的数量 输入样例 5 输出样例 1 ------------------------------------------------------------------------------------可以统计2的个数和的个数.编程之美有讲:一个数 n 的阶乘末尾有多少个 0 取决于从 1 到 n 的各个数的因子中 2 和 5…
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi,cipi,ci,表示含有pciipici项.按照pipi从小到大的顺序输出. 数据范围 1≤N≤1061≤N≤106 输入样例: 5 输出样例: 2 3 3 1 5 1 样例解释 5!=120=23∗3∗5 思路: 既然是找质因数的个数,我们就先把到n的所有素数筛出来: 每个素数在N!里的个数就是(…
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi,cipi,ci,表示含有pciipici项.按照pipi从小到大的顺序输出. 数据范围 1≤N≤1061≤N≤106 输入样例: 5 输出样例: 2 3 3 1 5 1 筛法应用:https://www.luogu.org/blog/top-oier/xian-xing-shai-fa-qiu-su…
题目链接:传送门 题解: $(1e6)!$ 这种数字,表示都表示不出来,想直接 $O(\sqrt{N})$ 分解质因数这种事情就不要想了. 考虑 $N!$ 的特殊性,这个数字的所有可能包含的质因子,就是 $1 \sim N$ 这些数所包含的质因子.因此,只需要考虑 $1 \sim N$ 这每个数字的质因子即可. 那么,不妨筛出属于 $1 \sim N$ 范围内的所有质数,对于每一个质数 $p$,$1 \sim N$ 中显然有 $\lfloor N/p \rfloor$ 个能够被 $p$ 整除的数…
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x…