Inception 模型】的更多相关文章

https://blog.csdn.net/xxiaozr/article/details/71481356 inception v1: 去除了最后的全连接层,使用全局平均池化层来代替,因为全连接层的参数很多,基本上占据了百分之九十的参数,而且全连接层会带来过拟合的问题. 采用了inception module. Hebbian 原理:神经反射活动的持续和重复会导致神经元连接稳定性的持久提升,当两个神经元细胞A和B距离很接近,并且A参与了对B的重复持续的兴奋,那么某些代谢变化会导致A将作为能使B…
Inception模型和Residual残差模型是卷积神经网络中对卷积升级的两个操作. 一.  Inception模型(by google) 这个模型的trick是将大卷积核变成小卷积核,将多个卷积核的运算结果进行连接,充分利用多尺度信息,这也体现了这篇文章的标题 Going Deeper with Convolutions.更加深的卷积操作. 废话不多说,上图 注意输入层在底部,输出层在顶部.废话不多说,上keras代码. from keras.layers import Conv2D, Ma…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5783006.html 之前使用的是torch,由于其他人在caffe上面预训练了inception模型,需要使用caffe的inception模型进行微调.然后网上搜了一下如何将caffe模型load到torch里面.有两种方式(可直接跳转到3查看): 1. https://github.com/szagoruyko/loadcaffe 该网址的不需要安装caffe.应该是根据.prototxt来强…
产品环境模型部署,创建简单Web APP,用户上传图像,运行Inception模型,实现图像自动分类. 搭建TensorFlow服务开发环境.安装Docker,https://docs.docker.com/engine/installation/ .用配置文件在本地创建Docker镜像,docker build --pull -t $USER/tensorflow-serving-devel https://raw.githubusercontent.com/tensorflow/servin…
论文原址:https://arxiv.org/pdf/1409.4842.pdf 代码连接:https://github.com/titu1994/Inception-v4(包含v1,v2,v4)  摘要 本文提出了一个深层的卷积网络结构-Inception,该结构的主要特点是提高了网络内部计算资源的利用率.在预估计算资源消耗量不变的情况下增加网络的深度及宽度.为了进行有效的优化,结构决策基于Hebbian原理及多尺寸处理操作.本文思想的一个经典实现是GoogLeNet,网络的深度为22层,该网…
一.声明 本代码非原创,源网址不详,仅做学习参考. 二.代码 # -*- coding: utf-8 -*- import glob # 返回一个包含有匹配文件/目录的数组 import os.path import random import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile # inception-v3瓶颈层的节点个数 BOTTLENECT_TENSOR_SIZE…
一 1x1卷积 在架构内容设计方面,其中一个比较有帮助的想法是使用 1×1 卷积.也许你会好奇,1×1 的卷积能做什么呢?不就是乘以数字么?听上去挺好笑的,结果并非如此,我们来具体看看. 过滤器为 1×1 ,这里是数字 2,输入一张 6×6×1 的图片,然后对它做卷积,过滤器大小为 1×1 ,结果相当于把这个图片乘以数字 2,所以前三个单元格分别是 2. 4. 6 等等.用 1×1 的过滤器进行卷积,似乎用处不大,只是对输入矩阵乘以某个数字.但这仅仅是对于6×6×1的一个通道图片来说, 1×1…
本节的代码参考了TensorFlow 源码中的示例程序https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream,并做了适当修改. 4.2.1 导入Inception 模型 在chapter_4_data/中或者网址https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip 下…
kaggle竞赛的inception模型已经能够提取图像很好的特征,后续训练出一个针对当前图片数据的全连接层,进行花的识别和分类.这里见书即可,不再赘述. 书中使用google参加Kaggle竞赛的inception模型重新训练一个全连接神经网络,对五种花进行识别,我姑且命名为模型flower_photos_model.我进一步拓展,将lower_photos_model模型进一步保存,然后部署和应用.然后,我们直接调用迁移之后又训练好的模型,对花片进行预测. 这里讨论两种方式:使用import…