郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设备中,以模拟大脑功能.在这种背景下,SNN的安全性变得重要但缺乏深入的研究,这与深度学习的热潮不同.为此,我们针对SNN的对抗攻击,确认了与ANN攻击不同的几个挑战:i)当前的对抗攻击是基于SNN中以时空模式呈现的梯度信息,这在传统的学习算法中很难获得:ii)在梯度累积过程中,输入的连续梯度与二值脉…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduction 1 Reinforcement learning with a network of spiking agents 2 Related Work 2.0.1 Hedonism 2.0.2 Learning by reinforcement in spiking neural network…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Contents: ABSTRACT 1. Introduction 2. Biological background 2.1. Spiking neuron models 2.2. Synaptic plasticity 2.2.1. Unsupervised learning 2.2.2. Supervised learning 2.2.3. Reinforcement learning 2.2.4. Delay learning…
目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram Swami, Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks. 概 本文提出一种distillation model, 能够免疫大部分的adversarial attacks,…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com/ssharmin/spikingNN-adversarial-attack Abstract 在最近对可信任的神经网络的探索中,我们提出了一个潜在的候选,即脉冲神经网络(SNN)之于对抗攻击的内在鲁棒性.在这项工作中,我们证明对CIFAR数据集上的深度VGG和ResNet结构,在基于梯度的攻击下,…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Summary 众所周知,化学突触传递是不可靠的过程,但是这种不可靠的函数仍然不清楚.在这里,我考虑这样一个假设,即大脑利用突触传递的随机性来进行学习,这类似于达尔文进化论中的基因突变.如果突触是“享乐主义的”,则可能发生这种情况,通过增加它们的囊泡释放或失败的概率来响应全局奖励信号,这取决于立即采取哪种动作.享乐主义突触通过计算对平均奖励梯度的随机近似来学习.它们与突触动态(例如短期促进和抑制)以及树突整合和动作电位生成的复杂性兼容…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2005.08041v1 [cs.CR] 16 May 2020 Abstract 由于机器学习系统被证明是有效的,因此它被广泛应用于各种复杂的现实问题中.更具体地说,脉冲神经网络(SNN)是解决机器学习系统中精度.资源利用率和能效挑战的一种有前途的方法.虽然这些系统正在成为主流,但它们存在固有的安全性和可靠性问题.在这篇文章中,我们提出NeuroAttack,一种跨层攻击,通过利用低层的可靠性问题通过高层攻击来威胁SNN…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract 灵长类视觉系统激发了深度人工神经网络的发展,使计算机视觉领域发生了革命性的变化.然而,这些网络的能量效率比它们的生物学对应体要低得多,而且它们通常使用反向传播进行训练,这是非常需要数据的.为了解决这些限制,我们使用了深度卷积脉冲神经网络(DCSNN)和延迟编码方案.我们将最低层的脉冲时序依赖可塑性(STDP)和最高层的奖励调节STDP(R-STDP)结合起来训练.简而言之,在R-STDP中,正确(错误)决策导致STD…
When a golf player is first learning to play golf, they usually spend most of their time developing a basic swing. Only gradually do they develop other shots, learning to chip, draw and fade the ball, building on and modifying their basic swing. In a…
目录 概 主要内容 问题描述 Differential Evolution (DE) 实验 Su J, Vargas D V, Sakurai K, et al. One Pixel Attack for Fooling Deep Neural Networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 828-841. @article{su2019one, title={One Pixel Attack f…