本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第32篇文章,我们来聊聊SVM. SVM模型大家可能非常熟悉,可能都知道它是面试的常客,经常被问到.它最早诞生于上世纪六十年代.那时候虽然没有机器学习的概念,也没有这么强的计算能力,但是相关的模型和理论已经提出了不少,SVM就是其中之一. SVM完全可以说是通过数学推导出来的模型,由于当时还没有计算机,所以模型当中的参数都是数学家们用手来算的.它有一个巨大的应用就是前苏联的计划经济体系,我们知道在计划经济当中,国家有…
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决什么问题? 最基本的应用是数据分类,特别是对于非线性不可分数据集.支持向量机不仅能对非线性可分数据集进行分类,对于非线性不可分数据集的也可以分类 (我认为这才是支持向量机的真正魅力所在,因为现实场景中,样本数据往往是线性不可分的). 现实场景一 :样本数据大部分是线性可分的,但是只是在样本中含有少量…
[机器学习]算法原理详细推导与实现(六):k-means算法 之前几个章节都是介绍有监督学习,这个章解介绍无监督学习,这是一个被称为k-means的聚类算法,也叫做k均值聚类算法. 聚类算法 在讲监督学习的时候,通常会画这样一张图: 这时候需要用logistic回归或者SVM将这些数据分成正负两类,这个过程称之为监督学习,是因为对于每一个训练样本都给出了正确的类标签. 在无监督学习中,经常会研究一些不同的问题.假如给定若干个点组成的数据集合: 所有的点都没有像监督学习那样给出类标签和所谓的学习样…
Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记,用于学习之后的一些总结. 首先,对于Aggregation模型,其基本思想就是使用不同的 g t 来合成最后的预测模型 G t . 对于合成的方式主要有四种: 方法 数学描述 1. 选择.选择最值得可信的 g t 来当做最终的模型,而这个 gt 可以使用validation set 来进行选择 $$G(x)…
SVM 原理引入 支持向量机( SVM,Support Vector Machine ) 背景 2012年前较为火热, 但是在12年后被神经网络逼宫, 由于应用场景以及应用算法的不同, SVM还是需要有所了解,而且在面试中SVM一般都会问到, 支持向量机是一个非常 经典且高效的分类模型 要解决的问题 如下图所示,3条黑色的线都可以将两边的数据进行分类, 那哪条线作为决策边界才是最好的呢? 如果特征数据本身就很难分,那又怎么办呢? 计算复杂度怎么样?能否实际应用? 决策边界定义 两边雷区, 要选择…
前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器.支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次规划的问题,其学习算法就为求解凸二次规划的最优化算法序列最小最优化算法(SMO). 关键词:二类分类:间…
SVM 前言:支持向量机(Support Vector Machine, SVM),作为最富盛名的机器学习算法之一,其本身是一个二元分类算法,为了更好的了解SVM,首先需要一些前提知识,例如:梯度下降.拉格朗日乘子法.KKT条件.感知机等... 背景知识 这部分内容,对SVM涉及到的部分知识先进行大致的摘录,便于后续对SVM更好的理解. 最优化问题 最优化问题一般是指对于某一个函数而言,求解在其指定作用域上的全局最小值问题,一般可分为下述三种情况: 无约束条件:一般采用梯度下降法,牛顿法,坐标轴…
机器学习算法--SVM 目录 机器学习算法--SVM 1. 背景 2. SVM推导 2.1 几何间隔和函数间隔 2.2 SVM原问题 2.3 SVM对偶问题 2.4 SMO算法 2.4.1 更新公式 2.4.2 裁剪 2.4.3 优化变量的选择 2.4.4 偏移和误差的更新 3. SVM的python实现 4. 改进 1. 背景 ​ 在线性分类任务中,对于同一个数据集,可能有多个分离超平面.例如在下图中,H2和H3都能够将白色点和黑色点分离开来,那么在这些分界面中,是否存在一个最优的分界面?一个…
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization Support Vector Machine (3) : 再谈泛化误差(Generalization Error) Support Vector Machine Python 代码实现 Support Vector Machine(1) : 简单SVM原理 1. background 对一个二值的…
SVM简述: SVM是一个线性二类分类器,当然通过选取特定的核函数也可也建立一个非线性支持向量机.SVM也可以做一些回归任务,但是它预测的时效性不是太长,他通过训练只能预测比较近的数据变化,至于再往后的变化SVM可能就不起作用了. SVM的思想 下面举个简单的例子.如下图所示,现在有一个二维平面,平面上有两种不同的数据,分别用圈和叉表示.由于这些数据是线性可分的,所以可以用一条直线将这两类数据分开,这条直线就相当于一个超平面,超平面一边的数据点所对应的y全是-1 ,另一边所对应的y全是1. 这个…