注意,本文中所指"机器学习"(ML)技术,特指SVM.随机森林等"传统"技术. 一.应用场景        相比较当下发展迅速的各路"端到端"技术,SVM.随机森林等"传统"技术它的应用价值,在于"以更贴合现有系统的方式提供一种识别的途径".比如你使用tf.keras或者openvino,那么首先你需要按照这些平台的方式搭建一个运行环境并且编写相关的接口,而后在现有系统中调用这个接口,获得一个定量的分类.如…
//俗话说:好记性不如烂笔头 //用到opencv 中的函数时往往会一时记不起这个函数的具体参数怎么设置,故在此将常用函数做一汇总: Mat srcImage = imread("C:/Users/Administrator/Desktop/车牌识别/车牌图像库/1.jpg");//读入图像函数 imshow("原图",srcImage);//显示图像函数 imwrite("图3.jpg",imageRIO);//保存图像函数 Mat image…
// 霍夫线变换 hough vector<Vec2f> lines;//定义一个矢量结构lines用于存放得到的线段矢量集合 HoughLines(dstImage,lines,,CV_PI/,); //依次在图中绘制出每条线段 ;i < lines.size();i++) { ],theta = lines[i][]; Point pt1,pt2; double a = cos(theta),b = sin(theta); double x0 = rho*a,y0 = rho*b;/…
整个工程进展到这一步也算是不容易吧,但技术含量也不怎么高,中间乱起八糟的错误太烦人了,不管怎么样,现在面临了最大的困难吧,图像处理算法.算法确实不好弄啊,虽然以前整过,但都不是针对图像的. 现在的图像算法太多了,好像谁都在研究,没有一个统一的路线,看论文也是越看越糊涂,无奈之下还是自己好好学学吧,幸好队友以前也搞过,大家也都愿意参与进来了,很开心! 首先改变下策略吧,之前一直在linux中直接在QT中利用OpenCV库进行图像处理的尝试,但是效率太差了,每次想要结果,都要用板子,所以,现在改用O…
图像处理中不适定问题 作者:肖亮博士 发布时间:09-10-25 图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的热点问题,成为现代数学家.计算机视觉和图像处理学者广为关注的研究领域.数学和物理上的反问题的研究由来已久,法国数学家阿达马早在19世纪就提出了不适定问题的概念:称一个数学物理定解问题的解存在.唯一并且稳定的则称该问题是适定的(Well Posed).如果不满足适定性概念中的上述判据中的一条或几条,称…
在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier    我已在另外一篇博文中介绍过:在opencv3中实现机器学习之:利用正态贝叶斯分类 2.K最近邻:k nearest neighbors classifier 3.支持向量机:support vectors machine    请参考我的另外一篇博客:在opencv3中实现机器学习之:利用svm(支持向量机)分类 4.决…
OpenCV图像处理篇之边缘检测算子 转载: http://xiahouzuoxin.github.io/notes/ 3种边缘检测算子 一阶导数的梯度算子 高斯拉普拉斯算子 Canny算子 OpenCV中相关源码 试试身手 3种边缘检测算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性,沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于二维的图像,梯度定义为一个向量, Gx对于x方向的梯度,Gy对应y方向的梯…
数据挖掘:实用机器学习技术P295页: 在weka软件中的实验者界面中,新建好实验项目后,添加相应的实验数据,然后添加对应需要的分类算法 ,需要使用多个算法时候重复操作添加add algorithm.再选择run标签卡中,选择start按钮,最后选择analysis选项卡,然后再在右上角点选experiment按钮,再点选perform test按钮,随后,之前添加的第一个算法就会和第二个与第三个算法的比较结果有关性能的统计显著性测试的结果就显示在右侧的空白面板中了. 我们比较的是百分比准确率统…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由信姜缘 发表于云+社区专栏 介绍 机器学习是计算机科学.人工智能和统计学的研究领域.机器学习的重点是训练算法以学习模式并根据数据进行预测.机器学习特别有价值,因为它让我们可以使用计算机来自动化决策过程. 在本教程中,您将使用Scikit-learn(Python的机器学习工具)在Python中实现一个简单的机器学习算法.您将使用Naive Bayes(NB)分类器,结合乳腺癌肿瘤信息数据库,预测肿瘤是恶性还是良性. 在本教程结束时…
简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与常熟b,圆就会得到圆心与半径等等) 3.霍夫线变…