终于做了一把MySQL调参boy】的更多相关文章

本文通过笔者经历的一个真实案例来介绍一个MySQL中的重要参数innodb_buffer_pool_size,希望能给大家带来些许收获,当遇到类似性能问题时可以多一种思考方式. 图片拍摄于大唐不夜城 问题背景 有个广西的客户,之前系统一直用的很流畅,最近反馈系统响应极慢,卡顿严重,希望我们尽快解决. 收到反馈以后我立马去查看服务器各项指标,微服务所在机器各项指标正常,但是数据库服务器已不堪重负,看一下top的输出: 数据库服务器的硬件配置为8核16G内存,最繁忙的时候系统负载已经达到了16,cp…
原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对:@酒酒Angie(drmr_anki@qq.com) && 寒小阳(hanxiaoyang.ml@gmail.com) 时间:2016年9月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/52663170 1.前言 如果一直以来你…
hyperopt自动调参 在传统机器学习和深度学习领域经常需要调参,调参有些是通过通过对数据和算法的理解进行的,这当然是上上策,但还有相当一部分属于"黑盒" hyperopt可以帮助我们做很多索然无味的调参工作 示例 直接看代码以及注释比较直接,下面通过一个随机森林可以感受一下: # coding=utf-8 from sklearn import datasets from sklearn.ensemble import RandomForestClassifier from skl…
一.GBDT类库弱学习器参数 二.回归 数据集:已知用户的30个特征,预测用户的信用值 from sklearn.ensemble import GradientBoostingRegressor from sklearn.grid_search import GridSearchCV #用平均值填补缺失值 gbdt_train_label = train_data['信用分'] gbdt_train_data = train_data[columns_] gbdt_test_data = te…
转自:https://www.zhihu.com/question/25097993 我和@杨军类似, 也是半路出家. 现在的工作内容主要就是使用CNN做CV任务. 干调参这种活也有两年时间了. 我的回答可能更多的还是侧重工业应用, 技术上只限制在CNN这块. 先说下我的观点, 调参就是trial-and-error. 没有其他捷径可以走. 唯一的区别是有些人盲目的尝试, 有些人思考后再尝试. 快速尝试, 快速纠错这是调参的关键. 看了杨军的回答. 对于这个回答, 下面的评论里面 @纪秋佳 说的…
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类.两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同.这些参数中,类似于Adabo…
关键部分转自http://www.cnblogs.com/pinard/p/6143927.html 第一次知道网格搜索这个方法,不知道在工业中是不是用这种方式 1.首先从步长和迭代次数入手,选择一个较大的步长,和较小的迭代次数.可以将步长设置为0.1,迭代次数从20-100网格搜索. 2.找到最合适的迭代次数,对决策树最大深度max_depth和内部节点再划分所需最少样本数min_samples_split进行网格搜索,最大深度3-15,样本100-800. 3.找到一个最大深度,由于min_…
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类.两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同.这些参数中,类似于Adabo…
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点. 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesC…
 一.word2vec调参   ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1 一般来说,比较喜欢用cbow ,因为模型中 cbow有向量相加的运算.##保留意见   -cbow 0表示不使用cbow模型,默认为Skip-Gram模型 -size 表示词向量维数:经验是不超过100…