问题:两个已经排好序的数组,找出两个数组合并后的中位数(如果两个数组的元素数目是偶数,返回上中位数). 设两个数组分别是vec1和vec2,元素数目分别是n1.n2. 算法1:最简单的办法就是把两个数组合并.排序,然后返回中位数即可,由于两个数组原本是有序的,因此可以用归并排序中的merge步骤合并两个数组.由于我们只需要返回中位数,因此并不需要真的合并两个数组,只需要模拟合并两个数组:每次选数组中较小的数,统计到第(n1+n2+1)/2个元素就是要找的中位数.算法复杂度为O(n1+n2) in…
问题:两个已经排好序的数组,找出两个数组合并后的中位数(如果两个数组的元素数目是偶数,返回上中位数). 感觉这种题目挺难的,尤其是将算法完全写对.因为当初自己微软面试的时候遇到了,但是没有想出来思路.看网上写了一堆解法,但是将思路说得非常清楚的少之又少. 有两种思路,一个是算法导论里面的,一个是求解k大元素.建议使用下面第二种思路,代码少不容易出错. 下面的内容摘自:https://blog.csdn.net/hackbuteer1/article/details/7584838 求解中位数,算…
package org.xiu68.ch02; public class Ex2_22 { public static void main(String[] args) { // TODO Auto-generated method stub //两数组有序,寻找两数组合并后第k小元素,O(logm+logn) int[] a=new int[]{1,3,5,7,9,11,13,15,17,19}; int[] b=new int[]{0,2,4,6,8,10,12,14,16,18}; for…
先吐槽一下,我好气啊,想了很久硬是没有做出来,题目要求的时间复杂度为O(log(m+n)),我猜到了要用二分法,但是没有想到点子上去.然后上网搜了一下答案,感觉好有罪恶感. 题目原型 正确的思路是:把问题转化一下,假设任意给一个k值,求这两个数组合并并按大小排序之后的第k个值.如此一来求中位数只是一个特例而已. 那如何搜索两个有序序列中第k个元素呢,这里又有个技巧.假设序列都是从小到大排列,对于第一个序列中前p个元素和第二个序列中前q个元素,我们想要的最终结果是:p+q等于k-1,且一序列第p个…
中位数是把一个数的集合划分为两部分,每部分包含的数字个数相同,并且一个集合中的元素均大于另一个集合中的元素. 因此,我们考虑在一个任意的位置,将数组A划分成两部分.i表示划分数组A的位置,如果数组A包含m个元素,则划分位置有m+1种情况.因此,i的取值范围是0~m. 当i=0时,表示left_A为空:当i=m时,表示right_A为空. 同理,我们也可以划分B数组: 我们把left_A和left_B放到一个集合中,把right_A和right_B放到一个集合中. 如果想要获得中位数,要保证len…
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). 这道题让我们求两个有序数组的中位数,而且限制了时间复杂度为O(log (m+n)),看到这个时间复杂度,自然而然的想到了应该使用二分查找法来求解.但是这道题…
给定两个大小为 m 和 n 的有序数组 nums1和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 不会同时为空. 示例 1: nums1 = [1, 3] nums2 = [2] 则中位数是 2.0 示例 2: nums1 = [1, 2] nums2 = [3, 4] 则中位数是 (2 + 3)/2 = 2.5 这道题让我们求两个有序数组的中位数,而且限制了时间复杂度为 O(log (m+n))…
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). You may assume nums1 and nums2 cannot be both empty. Example 1: nums1 = [1, 3]…
寻找两个有序数组的中位数 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 不会同时为空. 示例 1: nums1 = [1, 3] nums2 = [2] 则中位数是 2.0 示例 2: nums1 = [1, 2] nums2 = [3, 4] 则中位数是 (2 + 3)/2 = 2.5 来源:力扣(LeetCode) 链接:https://l…
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 不会同时为空. 示例 1: nums1 = [1, 3] nums2 = [2] 则中位数是 2.0 示例 2: nums1 = [1, 2] nums2 = [3, 4] 则中位数是 (2 + 3)/2 = 2.5 分析:给定两个有序的数组,求中位数,难度系数给的是 Hard,希望的复杂度是 lo…