2019.08.06模拟赛T2】的更多相关文章

题目大意: 已知三个$n$位二进制数$A$,$B$,$C$. 满足: $A+B=C$ 它们二进制位中$1$的个数分别为$a$,$b$,$c$. 求满足条件的最小的$C$. Solution 唉,又是一道随缘猜结论的题,可惜极限数据卡掉了我一个点,开大数组就A了..... 通过$n \leq 10$的打表,我们发现所有的最优解中都有一种情况是$A$的二进制位的$1$是连续一段. 事实上,真的就是这样的! 设$t=a+b-c$,显然,$t$表示加法过程中进位的次数. 我们设$A$的$a$个$1$是连…
昨天 ych 的膜你赛,这道题我 O ( n4 ) 暴力拿了 60 pts. 这道题的做法还挺妙的,我搞了将近一天呢qwq 题解 60 pts 根据题目给出的式子,四层 for 循环暴力枚举统计答案即可: #include<iostream> #include<cstdio> using namespace std; int read() { char ch=getchar(); ,x=; ') { if(ch=='-') x=-x; ch=getchar(); } ') { a=…
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 今天正睿又倒闭了,从删库到跑路. 天祺鸽鸽txdy! A "不要像个小学生一样一分钟就上来问东西."--蔡老板 虽然配图确实很有迷惑性. 所以读题不仔细,爆零两行泪. "这题也就NOIP第二题难度吧."--R爷 \(30pts:\) 显然的暴力,读懂题意之后\(O(w\times h)\)模拟即可. \(100pts:\) 每根短棍的效果在于交换相邻数.所以最后一定仍是个排列. 可以默认每个位置都要交…
模拟赛T2 交换 解题报告 题目大意: 给定一个序列和若干个区间,每次从区间中选择两个数修改使字典序最小. \(n,m\) 同阶 \(10^6\) 2.1 算法 1 按照题意模拟,枚举交换位置并比较. 时间复杂度\(O(mn3)\). 期望得分20分. 2.2 算法 2 不难发现给定区间之外的位置对每个询问的答案无影响,所以每次的问题就是取出一个子段,问这个子段怎样交换一次字典序最小. 根据字典序定义,我们需要找到最小的位置满足通过交换可以使这个位置变小,也就是说这个位置不是后缀最小值,因此从后…
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "正睿从来没有保证,模拟赛的题目必须原创." "文案不是我写的,有问题找喵老师去."--蔡老师 A R爷再次翻车,搞出来了一道六年前的CF题. \(100pts:\) 然而不是原题也很简单,斜率优化板子,单调队列搞一下就完事了. 也可以wqs二分,复杂度可以做到\(O(m\log m)\),\(与\)p\(无关.所以R爷差点把\)p$出到\(10^5\). B 本题乱搞做法非常多,所以R爷动用了权限来…
找规律 设\(p_i=a_{i+1}-a_i\),则答案就是\(\sum_{i=1}^{n-1}p_i\). 考虑若将\(a_i\)加上\(x\)(边界情况特殊考虑),就相当于是将\(p_{i-1}\)加\(x\),\(p_i\)减\(x\). 先考虑\(p_{i-1}\)加\(x\)所造成的影响: 当\(p_{i-1}\ge0\)时,就相当于将答案加上\(x\). 当\(-x\le p_{i-1}<0\)时,原先的答案是\(-p_{i-1}\),新的答案是\(x+p_{i-1}\),所以答案加…
树形\(DP\) 考虑设\(f_{i,j,k}\)表示在\(i\)的子树内,从\(i\)向下的最长链长度为\(j\),\(i\)子树内直径长度为\(k\)的概率. 然后我们就能发现这个东西直接转移是几乎不可能的. 所以我们在转移时要开个辅助数组\(s_{op,x,y,k}\),其中\(op\)用于滚存,表示最长链为\(x\),次长链为\(y\),子节点子树内直径长度小于等于\(k\)的概率. 然后我们只要枚举子节点,再枚举子节点子树内的链长,就可以采用刷表法简便地\(DP\)转移了. 这样看似\…
卢卡斯定理 题目中说到\(p\)是质数. 而此时要求组合数向质数取模的结果,就可以用卢卡斯定理: \[C_x^y=C_{x\ div\ p}^{y\ div\ p}\cdot C_{x\ mod\ p}^{y\ mod\ p}\] 也就是说,我们可以把\(x\)和\(y\)转化成两个\(p\)进制数,然后每一位分别求组合数后再乘起来. 所以问题来了,什么时候一个组合数的值模\(p\)为\(0\)? 由于它是质数,所以对于一个组合数\(C_a^b\),当且仅当\(a<b\)时它的值才会为\(0\)…
从暴力考虑转化题意 考虑最暴力的做法,我们枚举路径的两端,然后采用类似求树上路径长度的做法,计算两点到根的贡献,然后除去\(LCA\)到根的贡献两次. 即,设\(v_i\)为\(i\)到根路径上的边权异或和,那么\((x,y)\)的答案就是: \[v_x\ xor\ v_y\ xor\ v_{LCA(x,y)}\ xor\ v_{LCA(x,y)}\] 由于\(v_{LCA(x,y)}\ xor\ v_{LCA(x,y)}=0\),所以答案就是: \[v_x\ xor\ v_y\] 于是,题意就…
简单声明 我是蒟蒻不会推式子... 所以我用的是乱搞做法... 大自然的选择 这里我用的乱搞做法被闪指导赐名为"自然算法",对于这种输入信息很少的概率题一般都很适用. 比如此题,对于一组\(n,m\),我们可以进行\(10^6\)次随机,每次随机\(n\)个\(0\sim1\)之间的实数表示这个点在圆上的位置,然后我们暴力判断,用一个变量\(t\)记录下合法次数. 然后我们输出\(\frac t{10^6}\)就能得出大致概率了. 找规律 显然,上面这个"自然算法"…