一.正则化的假设集合 通过从高次多项式的H退回到低次多项式的H来降低模型复杂度, 以降低过拟合的可能性, 如何退回? 通过加约束条件: 如果加了严格的约束条件, 没有必要从H10退回到H2, 直接使用H2就可以了. 加上松弛点的约束条件, 使得模型比H2复杂, 但到不了H10那么复杂. 二.权重衰减正则化 通过拉格朗日乘子法处理带约束的优化问题, 只看谷的话,需沿着梯度反方向下降到谷底; 只看超球面的话,需沿着垂直于法向量的方向滚; 判断当前W是否是最优解就看它能否在超球面上的同时还能向更接近谷…
一.正则化的假设集合 通过从高次多项式的H退回到低次多项式的H来降低模型复杂度, 以降低过拟合的可能性, 如何退回? 通过加约束条件: 如果加了严格的约束条件, 没有必要从H10退回到H2, 直接使用H2就可以了. 加上松弛点的约束条件, 使得模型比H2复杂, 但到不了H10那么复杂. 二.权重衰减正则化 通过拉格朗日乘子法处理带约束的优化问题, 只看谷的话,需沿着梯度反方向下降到谷底; 只看超球面的话,需沿着垂直于法向量的方向滚; 判断当前W是否是最优解就看它能否在超球面上的同时还能向更接近谷…
原文地址:https://www.jianshu.com/p/3f7d4aa6a7cf 问题描述 程序实现 # coding: utf-8 import numpy as np import math import matplotlib.pyplot as plt def sign(x): if(x>=0): return 1 else: return -1 def read_data(dataFile): with open(dataFile,'r') as f: lines=f.readli…
原文地址:https://www.jianshu.com/p/bd7cb6c78e5e 什么时候适合用机器学习算法? 存在某种规则/模式,能够使性能提升,比如准确率: 这种规则难以程序化定义,人难以给出准确定义: 存在能够反映这种规则的资料. 所以,机器学习就是设计算法\(A\),从包含许多假设的假设集合\(H\)里,根据所给的数据集\(D\),选出和实际规则\(f\)最为相似的假设\(g\). \(g\)和\(f\)相似度的衡量是基于所有数据,不仅仅是\(D\). \(Learning \ M…
原文地址:https://www.jianshu.com/p/f2f4d509060e 机器学习是设计算法\(A\),在假设集合\(H\)里,根据给定数据集\(D\),选出与实际模式\(f\)最为相近的假设\(g\)(\(g\)可能与\(f\)相同,也可能不同). 那什么情况下学习是可行的?即保证\(g\)和\(f\)是相似的. 数据集内的表现\(g\)约等于\(f\); \(g\)在数据集外的表现约等于\(g\)在数据集内的表现. 结合1.2可保证,由算法在给定数据集上学习到的\(g\)(即数…
泛化能力差和过拟合: 引起过拟合的原因: 1)过度VC维(模型复杂度高)------确定性噪声: 2)随机噪声: 3)有限的样本数量N. 具体实验来看模型复杂度Qf/确定性噪声.随机噪声sigma2.样本数量N对过拟合的影响: 尽量避免过拟合: 1)从简单模型开始:降低模型复杂度: 2)data cleaning/data pruning:去noise: 3)data hinting(线索):增加样本数量: 4)regularization:正则化: 5)validation:验证.…
train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0: test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g). 如果|H|小,更易保证test(不等式右式小),难保证train(选择少): 如果|H|大,更易保证train(选择多),难保证test(不等式右式大). 如果|H|无限呢?2Mexp(...)可能大于1了,对于概率值上限来说失去意义.那能否用个有限值代替|H|呢? 看一下2Mexp(...)这个上限的来源. 本质是求并集…
原文地址:http://www.jianshu.com/p/311141f2047d 问题描述 程序实现 13-15 # coding: utf-8 import numpy as np import numpy.random as random import matplotlib.pyplot as plt def sign(x): if(x>=0): return 1 else: return -1 def gen_data(): x1=random.uniform(-1,1,1000) x…
上节课介绍了机器学习可以分为不同的类型.其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题.本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决. 一.Learning is Impossible 首先,考虑这样一个例子,如下图所示,有3个label为-1的九宫格和3个label为+1的九宫格.根据这6个样本,提取相应label下的特征,预测右边九宫格是属于-1还是+1?结果是,如果依据对称性,我们会把它归为+1:如果依据九宫格左上角是否是黑色,我们会把它…
上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA.PLA能够在平面中选择一条直线将样本数据完全正确分类.而对于线性不可分的情况,可以使用Pocket Algorithm来处理.本节课将主要介绍一下机器学习有哪些种类,并进行归纳. 一.Learning with Different Output Space Y(根据输入空间变化划分) 银行根据用户个人情况判断是否给他发信用卡的例子,这是一个典型的二元分类(binary classification)问题.也就是说输出只有两个,一般y=…