推理(Inference)与预测(Prediction)】的更多相关文章

使用TensorRT集成推理inference 使用TensorRT集成进行推理测试. 使用ResNet50模型对每个GPU进行推理,并对其它模型进行性能比较,最后与其它服务器进行比较测试. ResNet-50 Inference performance: Throughput vs Batch size 在每个GPU上使用不同的批处理大小(从1到32)运行带有预训练的ResNet50模型的吞吐量测试. 图1显示了吞吐量(帧/秒)的结果. 结果在gpu和潜伏期(在右纵轴上表示)上是一致的. Fi…
具体请参考:http://lab.fs.uni-lj.si/lasin/wp/IMIT_files/neural/nn05_narnet/ 神经网络预测时间序列数据,有三种模型, 这里是给出的是第二种NAR,即只有时间序列数据y(t),没有x(t).具体训练和预测matlab代码如下: format compact % data settings N = 249; % number of samples Nu = 224; % number of learning samples y = Dat…
Paddle Inference原生推理库 深度学习一般分为训练和推理两个部分,训练是神经网络"学习"的过程,主要关注如何搜索和求解模型参数,发现训练数据中的规律,生成模型.有了训练好的模型,就要在线上环境中应用模型,实现对未知数据做出推理,这个过程在AI领域叫做推理部署.用户可以选择如下四种部署应用方式之一: 服务器端高性能部署:将模型部署在服务器上,利用服务器的高性能帮助用户处理推理业务. 模型服务化部署:将模型以线上服务的形式部署在服务器或者云端,用户通过客户端请求发送需要推理的…
一开始对于机器学习,主要是有监督学习,我的看法是: 假定一个算法模型,然后它有一些超参数,通过喂多组数据,每次喂数据后计算一下这些超参数.最后,数据喂完了,参数取值也就得到了.这组参数取值+这个算法,就是模型文件,后续能够用来预测,也就是直接用这个算法+这个参数取值的组合,能投入实际使用,做分类/回归. 但是后来出现了inference,以及指出和learning是不同的过程.这就有点让人发晕了.learning是啥?inference是啥?learning不是inference的一种吗? 好吧…
1.拿初中的二元一次方程来说明: 1.1)说model就好比一元二次方程,它是个方程模型: 1.2)再说inference是求解该方程的某种方法--加减消元法(重在推理): 1.3)最后说algorithm是我们具体的求解步骤. 2.一篇完整的学术论文阐述内容顺序为: 2.1)模型Model(你建立的,the most important and difficult) 2.2)推理Inference (推理步骤,建立在该模型之上的解决某问题的思路) 2.3)算法Algorithm(基于上述推理内…
100个汉字,放在data目录下.直接将下述文件和data存在同一个目录下运行即可. 关键参数: run_mode = "train" 训练模型用,修改为validation 表示验证100张图片的预测精度,修改为inference表示预测 './data/00098/102544.png'这个图片手写识别结果,返回top3. charset_size = 100 表示汉字数目.如果是全量数据,则为3755. 代码参考了:https://github.com/burness/tenso…
1. 背景 需求:针对视频形式的数据输入,对每一帧图像,有多个神经网络模型需要进行推理并获得预测结果.如何让整个推理过程更加高效,尝试了几种不同的方案. 硬件:单显卡主机. 2. 方案 由于存在多个模型需要推理,但模型之间没有相互依赖关系,因此很容易想到通过并行的方式来提高运行效率. 对比了如下几种方案的结果,包括: 串行 线程 进程 协程 3. 实现 3.1 整体流程 配置了 4 个体量相近的模型. 为了屏蔽读取和解码的时间消耗对最终结果的影响,提前读取视频并准备输入. 统计每个单独模型执行推…
作者 胡启明,腾讯云专家工程师,专注 Kubernetes.降本增效等云原生领域,Crane 核心开发工程师,现负责成本优化开源项目 Crane 开源治理和弹性能力落地工作. 余宇飞,腾讯云专家工程师,专注云原生可观测性.成本优化等领域,Crane 核心开发者,现负责 Crane 资源预测.推荐落地.运营平台建设等相关工作. 田奇,腾讯高级工程师,专注分布式资源管理和调度,弹性,混部,Kubernetes Contributor,现负责 Crane 相关研发工作. 引言 业务的稳定性和成本之间的…
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言理解的深度双向变换器预训练>,介绍一种新的语言表征模型BERT——来自变换器的双向编码器表征量.异于最新语言表征模型,BERT基于所有层的左.右语境来预训练深度双向表征量.BERT是首个大批句子层面和词块层面任务中取得当前最优性能的表征模型,性能超越许多使用任务特定架构的系统,刷新11项NLP任务当前最…
0 - 摘要 我们提出了YOLO,一种新的物体检测方法.之前的物体检测工作是通过重新使用分类器来进行检测.相反,我们将对象检测抽象为一个回归问题,描述为以空间分隔的边界框和相关的类别概率.一个简单的神经网络通过对完整图片的一次检验直接预测出边界框和分类类别.因为整个识别的依据是一个单一的网络,所以可以在检测性能上进行端到端优化. 我们整体的框架非常快.我们的基础模型YOLO实时处理图片速度达到45帧/秒.我们网络的一个小规模版本,Fast YOLO,达到了惊人的处理155帧/秒的图片速率,并且仍…