logistic和softmax】的更多相关文章

之前写的一篇感觉太 Naive ,这里重新写一篇作为总结.Logistic 与 Softmax 都是一种概率判别模型(PRML p203),Softmax 通常用在 Neural Network 里最后全连接层 ,Logistic 在业界更是普及,因为简单有效.便于并行.计算量小快,适合大规模数据等优点,而且采用 SGD 的 Logistic 相当于直接 Online Learning ,非常方便.本文将对两个模型展开详细介绍,从 exponential family 到 parallel 等都…
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护.http://yann.lecun.com/exdb/mnist/ ) 回想…
再谈广义线性模型之前,先来看一下普通线性模型: 普通线性模型的假设主要有以下几点: 1.响应变量Y和误差项ϵ正态性:响应变量Y和误差项ϵ服从正态分布,且ϵ是一个白噪声过程,因而具有零均值,同方差的特性. 2.预测量xi和未知参数βi的非随机性:预测量xi具有非随机性.可测且不存在测量误差:未知参数βi认为是未知但不具随机性的常数,值得注意的是运用最小二乘法或极大似然法解出的未知参数的估计值β^i则具有正态性. 广义线性模型(generalized linear model)正是在普通线性模型的基…
二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻辑回归中,选择了 “对数似然损失函数”,L(Y,P(Y|X)) = -logP(Y|X). 对似然函数求最大值,其实就是对对数似然损失函数求最小值. Logistic regression, despite its name, is a linear model for classification…
简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用,然后针对两者的联系和区别进行了总结. 1. logistic函数 1.1 logistic函数定义 引用wiki百科的定义: A logistic function or logistic curve is a common "S" shape (sigmoid curve). 其实逻辑斯…
二分类问题Sigmod 在 logistic 回归中,我们的训练集由  个已标记的样本构成: ,其中输入特征.(我们对符号的约定如下:特征向量  的维度为 ,其中  对应截距项 .) 由于 logistic 回归是针对二分类问题的,因此类标记 .假设函数(hypothesis function) 如下: 我们将训练模型参数 ,使其能够最小化代价函数 : 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件3类,目标值y是一个有…
Multi-class classification多类别分类 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.8 Softmax regression 原有课程我们主要介绍的是二分分类(binary classification),这种分类只能有两种可能的标记0或1,如果我们要进行多类别的分类呢... 有一种logistic回归的一般形式叫做Softmax回归.能让你在试图识别某一分类时作出预测,或者说是多种分类的一个,不只是识别两个分类. 以识别图片的例子而言,我们设总的类别数为…
Softmax Regression Chapter Basics generate random Tensors Three usual activation function in Neural Network Softmax funcion Softmax Regression Logistic Regression Softmax Regression Examples Basics generate random Tensors Three usual activation funct…
朴素贝叶斯(NB) , 最大熵(MaxEnt) (逻辑回归, LR), 因马尔科夫模型(HMM),  最大熵马尔科夫模型(MEMM), 条件随机场(CRF) 这几个模型之间有千丝万缕的联系,本文首先会证明 Logistic 与 MaxEnt 的等价性,接下来将从图模型的角度阐述几个模型之间的关系,首先用一张图总结一下几个模型的关系: Logistic(Softmax)  MaxEnt 等价性证明 Logistic 是 Softmax 的特殊形式,多以如果 Softmax 与 MaxEnt 是等价…
wiki百科:softmax函数的本质就是将一个K维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间. 一.疑问 二.知识点 1. softmax函数公式的意义 ​ 在softmax函数,输入向量z的值有正有负,正数表示对应的特征对分类结果是积极的,负数则表示是消极的.因此,在softmax函数中,要 先计算\(e^z\), 目的是为了把所有的输入先处理到大于0的空间内,比如负数经过计算后会得到很接近0的数,因此归一化后,对应的概率也接近于0,这就很…
下溢(underflow):当接近零的数被四舍五入为零时发生下溢.许多函数在其参数为零而不是一个很小的正数时才会表现出质的不同.例如,我们通常要避免被零除或避免取零的对数. 上溢(overflow):当大量级的数被近似为∞或-∞时发生上溢.进一步的运算通常会导致这些无限值变为非数字. 必须对上溢和下溢进行数值稳定的一个例子是softmax函数(softmax function).softmax函数经常用于预测与Multinoulli分布相关联的概率,定义为: 考虑一下当所有xi都等于某个常数c时…
UFLDL Tutorial 翻译系列:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 第四章:SoftMax回归 简介:见 AI : 一种现代方法.Chapter21. Reinforce Learning p.703 Softmax函数为多个变量的Logitic函数的泛化. 为什么使用SoftMax方法:因为反向传播和更新方法简单,更直接且直观. 1.先做练习 Exercise:Softmax Regression…
Softmax 用于在深度学习中处理多分类(C > 2)问题,分类器最后的输出单元需要Softmax 函数进行数值处理.关于Softmax 函数的定义如下所示: 其中vi表示 vi = z[L] = w[L]a[L-1]+b[L] t = e[Vi] 举个例子: 这样就对应着最终分类的四个类别的概率 与softmax对应的就是hardmax 对应上面的例子就是形成一个[1,0,0,0]T的结果,即在最大的元素位置填1,其他的都填0 另外如果将softmax局限在C=2的条件下,事实上就变成了了一…
Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Learning for a few years as part of my research and among several of my related pet projects is ConvNetJS - a Javascript library for training Neural Net…
Deep Learning 近年来在各个领域都取得了 state-of-the-art 的效果,对于原始未加工且单独不可解释的特征尤为有效,传统的方法依赖手工选取特征,而 Neural Network 可以进行学习,通过层次结构学习到更利于任务的特征.得益于近年来互联网充足的数据,计算机硬件的发展以及大规模并行化的普及.本文主要简单回顾一下 MLP ,也即为Full-connection Neural Network ,网络结构如下,分为输入,隐层与输出层,除了输入层外,其余的每层激活函数均采用…
Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after the human brain, that are designed to recognize patterns. They interpret sensory data through a kind of machine perception, labeling or clustering raw…
Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Learning for a few years as part of my research and among several of my related pet projects is ConvNetJS - a Javascript library for training Neural Networks. Javascript allows one to ni…
linear regression logistic regression softmax regression #@author: gr #@date: 2014-01-21 #@email: forgerui@gmail.com 一.linear regression 线性模型: \[h_\theta(x) = \theta^T X\] 代价函数: 代价函数使用平方误差损失函数. \[\min_\theta J(\theta) = \dfrac{1}{2} \sum_{i=1}^m(h_\t…
"机器学习/深度学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是让很多其它的人了解机器学习的概念,理解其原理,学会应用.如今网上各种技术类文章非常多,不乏大牛的精辟见解,但也有非常多滥竽充数.误导读者的.这个系列对教课书籍和网络资源进行汇总.理解与整理,力求一击中的,通俗易懂.机器学习非常难,是由于她有非常扎实的理论基础,复杂的公式推导:机器学习也非常easy,是由于对她不甚了解的人也能够轻易使用.我希望好好地梳理一些基础方法模型,输出一些真正有长期參…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets("tmp/data", one_hot=True) learning_rate=0.01 training_epochs=25 batch_size=100 display_step=1 # placeholder x,y 用来存储输入,输入图像x构成一个2维…