知网链接 原文链接 张京坤,  王怡怡 软件导刊   2020年19卷第9期 页码:190-195 DOI:10.11907/rjdk.192529 出版日期:2020-9-15 摘 要: 为了改善网络舆情态势感知和预警中舆情信息分析不准确的问题,提出基于Spark技术的均值漂移(Mean Shift, MS)算法,利用Mean Shift算法原理分析Spark框架的特性,给出Mean Shift算法在Spark框架中的实现过程,包括舆情信息的预处理.特征提取.特征向量模型的构建和Mean Sh…
在大数据处理和人工智能时代,数据工厂(Data Factory)无疑是一个非常重要的大数据处理平台.市面上也有成熟的相关产品,比如Azure Data Factory,不仅功能强大,而且依托微软的云计算平台Azure,为大数据处理提供了强大的计算能力,让大数据处理变得更为稳定高效.由于工作中我的项目也与大数据处理相关,于是我就在思考,是否自己也可以设计打造一个数据工厂,以便寻求一些技术痛点的解决方案,并且引入一些有趣的新功能. 因此,我利用业余时间,逐步打造了一个基于Spark的数据工厂,并取名…
随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求.目前对大数据的分析工具,首选的是Hadoop/Yarn平台,但目前对大数据的实时分析工具,业界公认最佳为Spark.Spark是基于内存计算的大数据并行计算框架,Spark目前是Apache软件基金会旗下,顶级的开源项目,Spark提出的DAG作为MapReduce的替代方案,兼容HDFS.H…
基于ZigBee的家居控制系统的设计与应用 PPT简介:http://pan.baidu.com/s/1i38PC6D 摘  要 智能家居是未来家居的发展方向,其利用先进的网络技术.计算机技术和无线通信技术等将家居中的各种电子电气设备连接起来,统一管理.远程监控和资源共享,实现了高效.便利的生活环境.近些年互联网的迅猛发展,网络的稳定性.安全性和网络带宽都有了长足的发展,由互联网提供的各种服务已经深入到人们生活的方方面面,因此将智能家居系统同互联网结合起来,为用户提供远程控制服务,延伸智能家居系…
转载自:https://blog.csdn.net/sunbow0/article/details/50848719 1.基于Spark自动扩展scikit-learn(spark-sklearn)1.1 导论Spark MLlib 将传统的单机机器学习算法改造成分布式机器学习算法,比如在梯度下降算法中,单机做法是计算所有样本的梯度值,单机算法是以全体样本为计算单位:而分布式算法的逻辑是以每个样本为单位,在集群上分布式的计算每个样本的梯度值,然后再对每个样本的梯度进行聚合操作等.在Spark M…
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.html IBM 公司在 2015 年对外宣告了一个新的科技和商务时代的来临—认知时代.这个巨大的转变,来自 IBM 对技术和商业领域的三个重要的洞察力[1].第一,这个世界被数据所充斥.第二,这个世界通过代码被改造.第三,认知计算的出现.其中,认知计算可以: 通过感知与互动,理解非结构化数据 通过生成…
第一部分-电影网站: 软件架构: SpringBoot+Mybatis+JSP 项目描述:主要实现电影网站的展现 和 用户的所有动作的地方 技术选型: 技术 名称 官网 Spring Boot 容器 https://projects.spring.io/spring-boot/ Spring MVC MVC框架 http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc MyBatis…
第四部分-推荐系统-数据ETL 本模块完成数据清洗,并将清洗后的数据load到Hive数据表里面去 前置准备: spark +hive vim $SPARK_HOME/conf/hive-site.xml <?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <pr…
基于Spark的电影推荐系统(推荐系统~7) 22/100 发布文章 liuge36 第四部分-推荐系统-实时推荐 本模块基于第4节得到的模型,开始为用户做实时推荐,推荐用户最有可能喜爱的5部电影. 说明几点 1.数据来源是 testData 测试集的数据.这里面的用户,可能存在于训练集中,也可能是新用户.因此,这里要做处理. SparkStreaming + kakfa ## 开始Coding 步骤一:在streaming 包下,新建PopularMovies2 package com.csy…
第四部分-推荐系统-项目介绍 行业背景: 快速:Apache Spark以内存计算为核心 通用 :一站式解决各个问题,ADHOC SQL查询,流计算,数据挖掘,图计算 完整的生态圈 只要掌握Spark,就能够为大多数的企业的大数据应用场景提供明显的加速 "猜你喜欢"为代表的推荐系统,从吃穿住行等 项目背景介绍: 本项目是一个基于Apache Spark 的电影推荐系统, 技术路线:离线推荐+实时推荐 项目架构: 存储层:HDFS作为底层存储,Hive作为数据仓库 (Hive Metas…