Problem Description YaoYao is fond of playing his chains. He has a chain containing n diamonds on it. Diamonds are numbered from 1 to n. At first, the diamonds on the chain is a sequence: 1, 2, 3, …, n. He will perform two types of operations: CUT a…
题目链接: https://www.luogu.org/problemnew/show/P2824 题目描述: 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行m次局部排序,排序分为两种:1:(0,l,r)表示将区间[l,r]的数字升序排序2:(1,l,r)表示将区间[l,r]的数字降序排序.最后询问第q位置上的数字. 题解: 做法一:二分答案 然而我并没…
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来,单次时间复杂度严格\(O(\log n)\). 至于又有合并又有分裂的复杂度,蒟蒻一直不会比较有说服力的证明,直到看见SovietPower巨佬的题解 对于只有合并:合并两棵线段树的过程,是找到它们\(x\)个重合的节点的位置,并将它们合并,而对于不重合的节点会跳过. 注意到合并与分裂类似互逆过程,…
解法一:二分答案+线段树 首先我们知道,对于一个01序列排序,用线段树维护的话可以做到单次排序复杂度仅为log级别. 这道题只有一个询问,所以离线没有意义,而一个询问让我们很自然的想到二分答案.先二分出这个位置上的数是多少,然后将所有小于等于的数全部赋为0,其余赋为1,这样每次排序都是01序列排序了.如果最后p位置上的数为0则说明最终答案小于等于当前二分的答案,反之亦然. 这样这个问题就在$O(n \log^2 n)$的复杂度内解决了. #include<cstdio> #include<…
废话不说,有篇论文可供参考:杨思雨:<伸展树的基本操作与应用> Splay的好处可以快速分裂和合并. ===============================14.07.26更新============================= 实在看不惯那充满bug的指针树了!动不动就re!动不动就re!调试调个老半天,谁有好的调试技巧为T_T 好不容易写了个模板splay出来,指针的,好写,核心代码rotate和splay能压缩到10行. #include <cstdio> us…
[SinGuLaRiTy-1010]Copyrights (c) SinGuLaRiTy 2017. All Rights Reserved. Some Method Are Reprinted From 杨思雨-<伸展树的基本操作与应用> 引言 二叉查找树(Binary Search Tree)能够支持多种动态集合操作.因此,在信息学竞赛中,二叉排序树起着非常重要的作用,它可以被用来表示有序集合.建立索引或优先队列等.作用于二叉查找树上的基本操作的时间是与树的高度成正比的.对一个含 n各节点…
Pps:终于学会了伸展树的区间操作,做一个完整的总结,总结一下自己的伸展树的单点操作和区间维护,顺便给未来的自己总结复习用. splay是一种平衡树,[平均]操作复杂度O(nlogn).首先平衡树先是一颗二叉搜索树,刚刚开始学的时候找题hash数字的题先测板子... 后来那题被学长改了数据不能用平衡树测了...一道二分数字的题. 二叉搜索树的功能是,插入一个数字,在O(logn)的时间内找到它,并操作,插入删除等.但是可能会让二叉搜索树退化成链,复杂度达到O(n) 而平衡树就是通过一系列操作改变…
  伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(lgN)内完成插入.查找和删除操作.在伸展树上的一般操作都基于伸展操作:假设想要对一个二叉查找树执行一系列的查找操作,为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置.于是想到设计一个简单方法, 在每次查找之后对树进行重构,把被查找的条目搬移到离树根近一些的地方.伸展树应运而生.其插入.删除.查找操作基本与二叉搜索树的相同.其唯一的不同之处在于每次的插入.删除.查找操作都需要将其对应的节点通过旋转…
题目描写叙述 Description Tiger近期被公司升任为营业部经理.他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额. 分析营业情况是一项相当复杂的工作.因为节假日,大减价或者是其它情况的时候,营业额会出现一定的波动,当然一定的波动是可以接受的,可是在某些时候营业额突变得非常高或是非常低.这就证明公司此时的经营状况出现了问题.经济管理学上定义了一种最小波动值来衡量这样的情况: 该天的最小波动值 = m…
题意:根据m条指令改变排列1 2 3 4 … n ,每条指令(a, b)表示取出第a~b个元素,反转后添加到排列尾部 分析:用一个可分裂合并的序列来表示整个序列,截取一段可以用两次分裂一次合并实现,粘贴到末尾可以用一次合并实现. 翻转可以采用在每个结点上做标记的方法,flip = 1意味着将这棵子树翻转,可以类似线段树用一个pushdown()实现标记向下传递. 可以发现当前排列就是伸展树的中序遍历序列.中序遍历打印结果即可. 注意代码中设置了虚拟首结点0的技巧. 代码如下: #include…
Splay伸展树 有篇Splay入门必看文章 —— CSDN链接 经典引文 空间效率:O(n) 时间效率:O(log n)插入.查找.删除 创造者:Daniel Sleator 和 Robert Tarjan 优点:每次查询会调整树的结构,使被查询频率高的条目更靠近树根. Tree Rotation   树的旋转是splay的基础,对于二叉查找树来说,树的旋转不破坏查找树的结构.   Splaying   Splaying是Splay Tree中的基本操作,为了让被查询的条目更接近树根,Spla…
题目链接: http://poj.org/problem?id=3580 题目大意:对一个序列进行以下六种操作.输出MIN操作的结果. 解题思路: 六个操作,完美诠释了伸展树有多么吊.注意,默认使用Lazy标记,在pushdown中维护. ADD操作:为x~y元素加一个d值.首先用split切出x~y元素.然后改变给切出的root->add,root->min,root->v.再merge进原序列. REVERSE操作:把x~y元素反转.首先用split切出x~y元素,然后改变root-…
第一棵伸展树,各种调试模板……TVT 对于 1 n 这种查询我处理的不太好,之前序列前后没有添加冗余节点,一直Runtime Error. 后来加上冗余节点之后又出了别的状况,因为多了 0 和 n+1 这两个节点,并且每次截取翻转添加到序列最后,因此无法确定 n+1 这个节点在序列的哪个位置. 比如(括号中的为添加的冗余节点): (0) 1 2 3 4 5 (6) 我把[3,4]截取翻转添加到序列尾部,会变成这样: (0)1 2 5 (6)4 3 此时我如果再希望截取[3,4],期望的结果应该是…
好久没写过了,比赛的时候就调了一个小时,差点悲剧,重新复习一下,觉得这个写的很不错.转自:here Splay Tree(伸展树) 二叉查找树(Binary Search Tree)能够支持多种动态集合操作.因此,在信息学竞赛中,二叉排序树起着非常重要的作用,它可以被用来表示有序集合.建立索引或优先队列等. 作用于二叉查找树上的基本操作的时间是与树的高度成正比的.对一个含n各节点的完全二叉树,这些操作的最坏情况运行时间为O(log n).但如果树是含n个节点的线性链,则这些操作的最坏情况运行时间…
伸展树的介绍 1.出处:http://dongxicheng.org/structure/splay-tree/ A. 概述 二叉查找树(Binary Search Tree,也叫二叉排序树,即Binary Sort Tree)能够支持多种动态集合操作,它可以用来表示有序集合.建立索引等,因而在实际应用中,二叉排序树是一种非常重要的数据结构. 从算法复杂度角度考虑,我们知道,作用于二叉查找树上的基本操作(如查找,插入等)的时间复杂度与树的高度成正比.对一个含n个节点的完全二叉树,这些操作的最坏情…
这个题题意我大概解释一下,就是一开始一条直线,上面的点全是联通的,有三种操作 1.操作D把从左往右第x个村庄摧毁,然后断开两边的联通. 2.询问Q节点相联通的最长长度 3.把最后破坏的村庄重建. 这个其实也是非常典型的线段树区间合并,正好可以学一下. 我们给线段树的结点赋予5个值,l 区间左端点, r 区间右端点, ls从左端点开始的最大连续个数(左连续),rs从右端点开始最大的连续个数,ms这个节点所表示的区间内部,最大的连续个数. 然后我们考虑建树,由于最开始是相通的,因此这些值初始为r-l…
题意 https://www.lydsy.com/JudgeOnline/problem.php?id=1269 思路 伸展树(\(\text{splay}\))功能比较齐全的模板,能较好的体现 \(\text{splay}\) 的功能,简单介绍一下 \(\text{splay}\). 基本的概念和函数 \(\text{splay}\) 是平衡树的一种,能在均摊 \(\log n\) 的时间复杂度内完成很多序列操作(序列就是树的中序遍历),核心是以下两个函数. rotate 首先是旋转函数,\(…
好多树啊,程序猿砍树记,吼吼. 许多程序要解决的关键问题是:快速定位特定排序项的能力. 第一类:散列 第二类:字符串查找 第三类:树算法 树算法可以在辅助存储器中存储大量的数据. 二叉树.红黑树和伸展树主要适用于内存中的工作 而B树打算用于辅助存储器,比如硬盘. 二叉树 二叉树是最简单的树算法,但是构成了其他树算法的基础. 二叉树至少包含三个数据项: 两个指向其他节点的指针以及一些用户数据. 二叉树的根是没有父节点的节点. 任何给定节点的高度或深度是将其与根节点隔开的节点数. 二叉树除了拓扑结构…
文章图片和代码来自邓俊辉老师课件 概述 伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由丹尼尔·斯立特Daniel Sleator 和 罗伯特·恩卓·塔扬Robert Endre Tarjan 在1985年发明的.(出处百度百科) 它的操作就是将访问到的元素放在根节点处.主要的操作就是 zip 和 zag 下面是空间/时间复杂度(出处) 算法分析 双层伸展 双层伸展的作用是提升了树平均的访问性能.构思的精髓 : 向上追溯两层,而…
题意: 题解:典型伸展树的题,比较全面. 我理解的伸展树: 1 伸展操作:就是旋转,因为我们只需保证二叉树中序遍历的结果不变,所以我们可以旋转来保持树的平衡,且旋转有左旋与右旋.通过这种方式保证不会让树一直退化从而超时.虽然一次旋转的代价比较高,但是可以证明:每次操作都旋转(关键),则时间复杂度为O(n*log2 n) 2 更新:每个节点都可以存一些信息,并模拟线段树进行区间操作.父节点的信息是两个孩子节点加当前父节点的信息的总和.因为是可旋转的搜索二叉树,所以每次处理都需要注意上更新或下更新…
一.伸展树 伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作. 因为,它是一颗二叉排序树,所以,它拥有二叉查找树的性质:除此之外,伸展树还具有的一个特点是:当某个节点被访问时,伸展树会通过旋转使该节点成为树根.这样做的好处是,下次要访问该节点时,能够迅速的访问到该节点.但是,它并不是单纯的把访问的节点放 到树根就完了,它还能减少该节点的访问路径上的节点的深度. 假设想要对一个二叉查找树执行一系列的查找操作.为了使整个查找时间更小,被查频率高的那些条…
伸展树的基本操作与应用 [伸展树的基本操作] 伸展树是二叉查找树的一种改进,与二叉查找树一样,伸展树也具有有序性.即伸展树中的每一个节点 x 都满足:该节点左子树中的每一个元素都小于 x,而其右子树中的每一个元素都大于 x.与普通二叉查找树不同的是,伸展树可以自我调整,这就要依靠伸展操作 Splay(x,S). 伸展操作 Splay(x,S) 伸展操作 Splay(x,S)是在保持伸展树有序性的前提下,通过一系列旋转将伸展树 S 中的元素 x 调整至树的根部.在调整的过程中,要分以下三种情况分别…
(因为没有认证,所以这道题就由Froggy上传) 线段树分裂用到的地方确实并不多,luogu上以前也没有这道模板题,所以就出了一道,实在是想不出怎么出模板了,所以这道题可能可以用一些其他的算法水过去. 前置芝士 线段树: 本题中用到的是权值线段树(查询每个数在序列中出现的次数,序列中第k大的数等操作). 线段树合并: 为了增加一下码量才放上的. 线段树分裂 既然是模板题,这个自然才是重点. 以下这样一颗线段树: 需要将橙色线段覆盖的部分分裂出来,需要建一颗新的树,当一个节点所代表的区间与需要分裂…
二叉排序树能够支持多种动态集合操作,它可以被用来表示有序集合,建立索引或优先队列等.因此,在信息学竞赛中,二叉排序树应用非常广泛. 作用于二叉排序树上的基本操作,其时间复杂度均与树的高度成正比,对于一棵有 \(n\) 个节点的二叉树,这些操作在最有情况下运行时间为 \(O( \log_2 n)\). 但是,如果二叉树退化成了一条 \(n\) 个节点组成的线性链表,则这些操作在最坏情况下的运行时间为 \(O(n)\). 有些二叉排序树的变形,其基本操作的性能在最坏情况下依然很好,如平衡树(AVL)…
Hotel 转载自:http://www.cnblogs.com/scau20110726/archive/2013/05/07/3065418.html [题目链接]Hotel [题目类型]线段树 区间合并 &题意: 有一个线段,从1到n,下面m个操作,操作分两个类型,以1开头的是查询操作,以2开头的是更新操作 1 w 表示在总区间内查询一个长度为w的可用区间,并且要最靠左,能找到的话返回这个区间的左端点并占用了这个区间,找不到返回0 好像n=10 , 1 3 查到的最左的长度为3的可用区间就…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3911 线段树区间合并的题目,解释一下代码中声明数组的作用: m1是区间内连续1的最长长度,m0是区间内连续0的最长长度,l1是从区间左端开始连续1的长度,r1是从区间右端开始连续1的长度,l0是从区间左端开始连续0的长度,r0是从区间右端开始连续0的长度,lazy标记该区间是否进行异或操作. 之所以要同时保存1的连续长度和0的连续长度,是因为这道题设计取反操作,所以取反是,只需将对应的0.1长度调换一下…
开始以为是水题,结果...... 给你一些只有两种颜色的石头,0为白色,1为黑色. 然后两个操作: 1 l r 将[ l , r ]内的颜色取反 0 l r 计算[ l , r ]内最长连续黑色石头的个数 明显的线段树区间合并,记录lmax(从左端点开始的最长值) rmax(从右端点开始的最长值) 用于更新mmax(区间最长值)  但是这儿有区间更新,所以记录0的三个最长值和1的三个最长值,更新父节点的时候交换0与1就好.  还有这儿注意查询时,可能值在查询的几个子区间的的相邻处(因为我们只能查…
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次搜索的复杂度为n的量级.AVL树通过动态平衡树的深度,单次搜索的复杂度为log(n) (以上参考纸上谈兵 AVL树).我们下面看伸展树(splay tree),它对于m次连续搜索操作有很好的效率. 伸展树会在一次搜索后,对树进行一些特殊的操作.这些操作的理念与AVL树有些类似,即通过旋转,来改变树节…
Splay Tree 是二叉查找树的一种,它与平衡二叉树.红黑树不同的是,Splay Tree从不强制地保持自身的平衡,每当查找到某个节点n的时候,在返回节点n的同时,Splay Tree会将节点n旋转到树根的位置,这样就使得Splay Tree天生有着一种类似缓存的能力,因为每次被查找到的节点都会被搬到树根的位置,所以当80%的情况下我们需要查找的元素都是某个固定的节点,或者是一部分特定的节点时,那么在很多时候,查找的效率会是O(1)的效率!当然如果查找的节点是很均匀地分布在不同的地方时,Sp…
概要 本章介绍伸展树.它和"二叉查找树"和"AVL树"一样,都是特殊的二叉树.在了解了"二叉查找树"和"AVL树"之后,学习伸展树是一件相当容易的事情.和以往一样,本文会先对伸展树的理论知识进行简单介绍,然后给出C语言的实现.后序再分别给出C++和Java版本的实现:这3种实现方式的原理都一样,选择其中之一进行了解即可.若文章有错误或不足的地方,希望您能不吝指出! 目录1. 伸展树的介绍2. 伸展树的C实现3. 伸展树的C测试…