InnoDB 中 B+ 树索引的分裂】的更多相关文章

数据库中B+树索引的分裂并不总是从页的中间记录开始,这样可能会导致空间的浪费,例如下面的记录: 1, 2, 3, 4, 5, 6, 7, 8, 9 插入式根据自增顺序进行的,若这时插入10这条记录后需要进行页的分裂操作,那么根据B+树对半分裂的规则,会将记录5作为分裂点记录,分裂后得到下面两个页: P1: 1, 2, 3, 4 P2: 5, 6, 7, 8, 9, 10 然而由于插入是顺序的,P1这个页中将不再会有记录被插入,从而导致空间的浪费,而P2又会再次分裂.那么如何优化? InnoDB存…
http://www.tamabc.com/article/85038.html 从MySQL Bug#67718浅谈B+树索引的分裂优化   原文链接:http://hedengcheng.com/?p=525 问题背景 今天,看到Twitter的DBA团队发布了其最新的MySQL分支:Changes in Twitter MySQL 5.5.28.t9,此分支最重要的一个改进,就是修复了MySQL 的Bug #67718:InnoDB drastically under-fills page…
1)         不同应用中B+树索引的使用 对于OLTP应用,由于数据量获取可能是其中一小部分,建立B+树索引是有异议时的 对OLAP应用,情况比较复杂,因为索引的添加应该是宏观的而不是微观的. 2)         联合索引 对表上多个列进行索引.联合索引的创建方法与多个索引创建的方法一样.不同之处在于有多个索引页 CREATE TABLE t( a INT, b INT, PRIMARY KEY(a), KEY idx_a_b(a,b) )ENGINE=INNODB 从本质上来说,联合…
原文链接:http://hedengcheng.com/?p=525 问题背景 今天,看到Twitter的DBA团队发布了其最新的MySQL分支:Changes in Twitter MySQL 5.5.28.t9,此分支最重要的一个改进,就是修复了MySQL 的Bug #67718:InnoDB drastically under-fills pages in certain conditions.关于此Bug的详细描述,以及如何重现此问题,可以阅读以上的Bug链接,以下简单描述下此Bug对应…
原文链接:http://hedengcheng.com/?p=525 问题背景 今天,看到Twitter的DBA团队发布了其最新的MySQL分支:Changes in Twitter MySQL 5.5.28.t9,此分支最重要的一个改进,就是修复了MySQL 的Bug #67718:InnoDB drastically under-fills pages in certain conditions.关于此Bug的详细描述,以及如何重现此问题,可以阅读以上的Bug链接,以下简单描述下此Bug对应…
本文出处:http://www.cnblogs.com/wy123/p/7211742.html (保留出处并非什么原创作品权利,本人拙作还远远达不到,仅仅是为了链接到原文,因为后续对可能存在的一些错误进行修正或补充,无他) MySQL中的InnoDB引擎表索引类型有一下几种(以下所说的索引,没有特殊说明,均指InnoDB引擎表索引.) 0 = Secondary Index,二级索引, 1 = Clustered Index,聚集索引 2 = Unique Index,唯一索引 3 = Pri…
何时使用索引 并不是在所有的查询条件下出现的列都需要添加索引.对于什么时候添加B+树索引,我的经验是访问表中很少一部分行时,使用B+树索引才有意义.对于性别字段.地区字段.类型字段,它们可取值的范围很小,即低选择性.如: SELECT * FROM student WHERE sex='M' 对于性别,可取值的范围只有'M'.'F'.对上述SQL语句得到的结果可能是该表50%的数据(我们假设男女比例1:1),这时添加B+树索引是完全没有必要的.相反,如果某个字段的取值范围很广,几乎没有重复,即高…
B+树索引其本质就是B+树在数据库中的实现,但是B+索引在数据库中有一个特点就是其高扇出性,因此在数据库中,B+树的高度一般都在2-3层,也就是对于查找某一键值的行记录,最多只需要2到3次IO,这倒不错.因为我们知道现在一般的磁盘每秒至少可以做100次IO,2-3次的IO意味着查询时间只需0.02-0.03秒. 数据库中的B+树索引可以分为聚集索引(clustered index)和辅助聚集索引(secondary index)辅助聚集索引有时也称非聚集索引(non-clustered inde…
MySQL的InnoDB索引结构采用B+树,B+树什么概念呢,二叉树大家都知道,我们都清楚随着叶子结点的不断增加,二叉树的高度不断增加,查找某一个节点耗时就会增加,性能就会不断降低,B+树就是解决这个问题的. B树和B+树 在一棵M阶B树中,每个节点最多有 M-1 个关键字,根节点最少可以只有一个关键字,非根节点最少有 Math.ceil(m/2)-1个关键字,下图是一棵阶数为3的树 看下图我们说说B树的特点,很明显一个节点存储的数据更多了,不需要很高的高度就可以存储更多的数据,把一个节点看作一…
很早之前,就从学校的图书馆借了MySQL技术内幕,InnoDB存储引擎这本书,但一直草草阅读,做的笔记也有些凌乱,趁着现在大四了,课程稍微少了一点,整理一下笔记,按照专题写一些,加深一下印象,不枉读了一遍书.与此同时,也加深一下对MySQL的了解,认识了原理,对优化的原则才有把握,对问题的分析才有源头. 关于B+树数据结构 ①InnoDB存储引擎支持两种常见的索引. 一种是B+树,一种是哈希.B+树中的B代表的意思不是二叉(binary),而是平衡(balance),因为B+树最早是从平衡二叉树…