Gcd&Exgcd】的更多相关文章

Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用Exgcd解之即可到答案,Exgcd即扩展欧几里得算法.他还能求乘法逆元,同余方程通解.没有你想得到的,只有你做不到的. 这里是对于两个算法的学习小记 Content 欧几里得算法 算法介绍 由百度百科得 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数. 从整数的除法可知:对任给二整…
gcd就是求a和b最大公约数,一般方法就是递推.不多说,上代码. 一.迭代法 int gcd(int m, int n) { ) { int c = n % m; n = m; m = c; } return n; } 二.递归法 int Gcd(int a, int b) { ) return a; return Gcd(b, a % b); } 但exgcd是个什么玩意??? 百度了一下,百科这么讲的: 对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然…
ios_base::sync_with_stdio(); cin.tie(); ], nxt[MAXM << ], Head[MAXN], ed = ; inline void addedge(int u, int v) { to[++ed] = v; nxt[ed] = Head[u]; Head[u] = ed; } #include<iostream> #include<cstdio> #include<cstdlib> #include<cst…
我恨数论 因为打这篇的时候以为a|b是a是b的倍数,但是懒得改了,索性定义 a|b 为 a是b的倍数 咳咳,那么进入正题,如何证明gcd,也就是 gcd(a,b) = gcd(b,a%b)? 首先,设 p = a/b,c = a mod b 则a = p*b + c m = gcd(a,b),n = gcd(b,c) 因为m = gcd(a,b),所以 a | m 且 b | m 因为 b | m 所以 b * p | m                //  a|b,则a*k|b (k为整数)…
目录 欧几里德算法与扩展欧几里德算法 1.欧几里德算法 2.扩展欧几里德算法 欧几里德算法与扩展欧几里德算法 1.欧几里德算法 #include<bits/stdc++.h> using namespace std; int gcd(int a,int b) { if(b==0) return a; else return gcd(b,a%b); } //return b == 0 ? a : gcd(b, a % b); int main() { int m,n; while(cin>…
欧几里得算法: \[gcd(a,b)=gcd(b,a\bmod b)\] 证明: 显然(大雾) 扩展欧几里得及证明: 为解决一个形如 \[ax+by=c\] 的方程. 根据裴蜀定理,当且仅当 \[gcd(a,b)|c\] 时方程有解. 然后解这个方程... 我觉得大概就是: 我们设 \[ax_1+by_1=gcd(a,b)\] \[bx_2+(a\bmod b) y_2=gcd(b,a\bmod b)\] 根据欧几里得以及\(a\bmod b=a-\lfloor a/b\rfloor\)有 \[…
很多题都是要求出什么最大公约数或者最小公倍数什么的,也有一些题目是和约数个数有关的,所以需要总结一下. 首先最大公约数和最小公倍数怎么求呢? 当然是观察法了,对于一些很聪明的孩纸他们一般随便一看就秒出答案,当然更聪明的孩纸知道最小公倍数并不容易求出. 所以需要先看出最大公约数,然后两数乘积/他们的最大公约数就是最小公倍数了. 我?我当然是上述方法求了.那样很快的.当然对于一些比较复杂的就要采取一些方法了. 如短除法,这样的方法实现很快的. 当求最大公约数的时候把列出的一个集合中的数字公共的约数全…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子,就不用怕在计算时溢出了. 下面我会用与分别表示a与b的最大公约数与最小公倍数. 首先会来学扩欧的同学肯定都会欧几里得算法(即辗转相除法)了吧 而通过观察发现:,先除后乘防溢出. 所以与的代码如下: inline int gcd(int a,int b) {)?a:gcd(b,a%b);} inlin…