约数个数函数(d)的一个性质证明】的更多相关文章

洛谷P3327 [SDOI2015]约数个数和 洛谷P4619 [SDOI2018]旧试题 要用到这个性质,而且网上几乎没有能看的证明,所以特别提出来整理一下. \[ d(AB) = \sum_{x|A} \sum_{y|B} [\gcd (x,y) = 1] \] (看上去比较不可思议对吧) 右侧的枚举,一部分因子算多了(比如当 \(\gcd(x,y)=1\) 且额外有 \(x|B,y|A\) 时,可以枚举出 \(x*y = y*x\) ),一部分因子又没有算(比如当 \(\gcd(A,B)…
慢慢化柿子吧 要求的是这个 \[\sum_{i=1}^N\sum_{j=1}^Md(ij)\] 神奇的约数个数函数有一个这样的性质 \[d(ij)=\sum_{x|i}\sum_{y|j}[(x,y)=1]\] 试着从唯一分解定理的角度去理解,将\(i,j\)分别分解质因数 显然\(d(ij)\)应该等于每一个\(p\)在\(i,j\)中分解出来的指数加起来加1再相乘 所以分别枚举所有约数的话,保证这对约数互质就可以求出所有约数了 之后现在的答案变成了 \[\sum_{i=1}^N\sum_{j…
https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum_{i|x}\sum_{j|y}[(i,j)=1]$ 证明:(转自:https://23613.blog.luogu.org/solution-p3327) 考虑一个质因子p,设x中p的指数为a,y中p的指数为b(指质因数分解结果中指数),那么根据因数个数定理,这个质因子对式子左边的贡献(指使得答案…
2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下用\(d(i)\)和\(d(j)\)算\(d(ij)\),发现不行... 然后翻题解看到了一步好神的转化: \[ d(nm) = \sum_{i\mid n} \sum_{j\mid m} [gcd(i,j)=1] \] 晚上再补吧还是没拿草稿纸... 补: \(Proof.\) 首先注意约数个数…
对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的约数个数最多的数. 怎样计算约数个数? 约数个数定理:对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则n的正约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1) .其中a1.a2.a3…ak是p1.p2.p3,…pk的指数.   所以,只需枚举一个数…
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} a_{\frac n d} \] 双重因子 \[ \sum_{k | n} \sum_{j | k} a_{k, j} = \sum_{k | n} \sum_{j | \frac n k} a_{jk, k} \] \[ \sum_{n | k} \sum_{k | j} a_{k, j} = \…
只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 性质 两个积性函数的狄利克雷卷积仍为积性函数. 若积性函数满足 \(f(n^p)=f^p(n)\)则它一定是完全积性函数.因为一个数可以唯一分解,则它一定可以表示成质数相乘的形式:因为他时积性函数所以,\(f(\prod_{i=1}^{n}p_i)=\prod _{i=1}^{n}f(p_i)\),…
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \(n,m \leq 5 \times 10^4\). 抛出一个引理:\(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\),该定理将在这篇博客结束证明. 知道这个定理之后,就可以按照套路开始推式子了: \[\begin{aligned}&an…
请编写一个c函数,该函数给出一个字节中被置为1的位的个数 #include <stdio.h> void fun(char ch) { int i; int temp; int count=0; for(i=0;i<8;i++) { temp=(ch>>i) & 1; if(temp == 1) { count++; } } printf("Ch include 1!\n"); printf("%d\n",count); } i…
又是恶心的莫比乌斯反演,蒟蒻我又是一脸懵逼的被CXR dalao狂虐. 题目要求\(ans=\sum_{i=1}^n \sum_{j=1}^m d(ij)\),其中\(d(ij)\)表示数\(x\)的约数个数 这道题的一大难点就在于\(d(ij)\)这个函数,它有一个重要的性质: \[d(ij)=\sum_{x|i}\sum_{y|i}[\gcd(i,j)=1]\] 大致的证明思路就是对于\(i,j\)的所有约数,为了避免重复计算,我们只取互质的一对. 知道了这个就是反演的套路了(如果不知道为什…