poj 3074】的更多相关文章

Sudoku Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 3074 Appoint description:  System Crawler  (2015-04-18) Description In the game of Sudoku, you are given a large 9 × 9 grid divided into sm…
POJ 3074 : Description In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example, . 2 7 3 8 . . 1 . . 1 . . . 6 7 3 5 . . . . . . . 2 9 3 . 5 6 9 2 . 8 . . . . . . . . . . . 6 . 1 7 4 5 . 3 6 4 . . . . .…
传送门:http://poj.org/problem?id=3074 DLX 数独的9*9的模板题. 具体建模详见下面这篇论文.其中9*9的数独怎么转化到精确覆盖问题,以及相关矩阵行列的定义都在下文中,描述的十分清晰 http://wenku.baidu.com/view/4ab7bd00a6c30c2259019eae.html 有关Dancing Links的英文论文详见下面链接 http://wenku.baidu.com/view/60eb28ded15abe23482f4d77.htm…
[题目链接] http://poj.org/problem?id=3074 [算法] 将数独问题转化为精确覆盖问题,用Dancing Links求解 转化方法如下 : 我们知道,在一个数独中 : 1.每个格子填且只填一个数 2.每一行填1-9这九个数 3.每一列填1-9这九个数 4.每个格子填1-9这九个数 对于第一个约束条件,我们用81列,表示是否填入 对于第二个约束条件,我们每一行用9列,表示这一行是否有1-9 第三,四个约束条件的处理方式和第二个类似 [代码] #include <algo…
题目:Sudoku 匪夷所思的方法,匪夷所思的速度!!! https://github.com/ttlast/ACM/blob/master/Dancing%20Link%20DLX/poj%203074.cpp #include <iostream> #include <cstdio> #include <cstring> using namespace std; ; int flag; typedef long long LL; #define FF(i,A,s)…
DLX精确覆盖.....模版题 Sudoku Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8336   Accepted: 2945 Description In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example, . 2 7 3 8 . . 1 . . 1 . .…
推荐一个写数独很好的博客:http://www.cnblogs.com/grenet/p/3163550.html 主要是把九宫格里的元素换到矩阵里面再求解dancing links 网上找的一模版 #include<cstdio> #include<cstring> #define MAXM 10 #define MAXL 324 #define MAXN 240000 #define INF 0x7FFFFFFF char sd[MAXM][MAXM]; int L[MAXN]…
Sudoku Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8152   Accepted: 2862 Description In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example, . 2 7 3 8 . . 1 . . 1 . . . 6 7 3 5 . . .…
Description In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example, . 2 7 3 8 . . 1 . . 1 . . . 6 7 3 5 . . . . . . . 2 9 3 . 5 6 9 2 . 8 . . . . . . . . . . . 6 . 1 7 4 5 . 3 6 4 . . . . . . . 9 5 1…
二进制优化+dfs 话说这题数据中真的丧心病狂..不加inline还过不去.. 因为不会DLX只好用二进制来优化了...万万没想到还是低空飘过 我们在行.列.格分别用一个9位二进制常数来记录什么数能放什么数不能放(1能0不能),这样对每一个格子把三个数&起来,就能得到一个新的二进制常数,来表示这个格子能放的数有哪些. 如果要放一个数,那么将这个数对应的第几个二进制位与行.列.格的二进制数异或就行了,在搜索时回溯也可以再异或一次还原. 注意:二进制位1-9位表示数字1-9是否被用过 例如 1000…