OpenCV stereo matching BM 算法】的更多相关文章

一直找不到opencv stereo matching的根据和原理出处,下面这个文章贴了个链接,有时间看看: Basically OpenCV provides 2 methods to calculate a dense disparity map: cvFindStereoCorrespondenceBM: Fast (can process several images per second), but if parameters not tuned then the results ar…
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213, 来自:shiter编写程序的艺术 基础知识 计算机视觉是一门研究使用计算机来模拟人的视觉系统的学科."一图胜千言",人类对于图像中的信息感知效率远超文字等其他媒介,人类获取的信息总量中更是有高达80%依靠视觉系统[1].相对于人类高效的图像信息提取能力,计算机在图像信息的理解上仍然效率低下.  计算机视觉作为一门交叉学科,综合了生物学,心理学,数学,计…
双目立体匹配一直是双目视觉的研究热点,双目相机拍摄同一场景的左.右两幅视点图像,运用立体匹配匹配算法获取视差图,进而获取深度图.而深度图的应用范围非常广泛,由于其能够记录场景中物体距离摄像机的距离,可以用以测量.三维重建.以及虚拟视点的合成等. 之前有两篇博客简要讲过OpenCV3.4中的两种立体匹配算法效果比较:http://www.cnblogs.com/riddick/p/8318997.html .以及利用视差图合成新视点: http://www.cnblogs.com/riddick/…
<Effective large scale stereo matching> In this paper we propose a novel approach to binocular stereo for fast matching of high-resolution images. Our approach builds a prior on the disparities by forming a triangulation on a set of support points w…
个人收藏了很多香港大学.香港科技大学以及香港中文大学里专门搞图像研究一些博士的个人网站,一般会不定期的浏览他们的作品,最近在看杨庆雄的网点时,发现他又写了一篇双边滤波的文章,并且配有源代码,于是下载下来研读了一番,这里仅仅对一些过程做简单的记录,以防时间久了忘记. 关于杨庆雄的相关文章可见:Hardware-Efficient Bilateral Filtering for Stereo Matching以及一篇  Recursive Bilateral Filtering,都配有相关的源代码.…
怀着很纠结的心情来总结这篇论文,这主要是因为作者提虽然供了源代码,但是我并没有仔细去深究他的code,只是把他的算法加进了自己的项目.希望以后有时间能把MST这一结构自己编程实现!! 论文题目是基于非局部代价聚类(non-local cost aggregation)的立体匹配,从题目上看这篇论文不是局部算法,但是也不是传统意义上的全局算法.这要从基于窗结构局部立体匹配算法说起,如下图: 我们求左右两幅图像在视差d下一点的cost时,我们实际是求得以该点为中心半径为r的Windows内所有点的c…
最近在研究用深度学习预测图像深度信息的方法,一开始用的是2017年CVPR上Godard大神的monodepth,代码在这里.这篇文章介绍了利用双目的consistency训练网络以对单张图像进行深度估计,思路还是蛮有新意的.某天在必应上无意中发现了商汤(sensetime)的Yue Luo同学发表在2018年CVPR上的一篇文章Single View Stereo Matching,代码开源了,因此fork一下clone下来跑一跑,没想到按照readme跑第一步installation就遇到了…
传统的使用窗口的方法缺陷主要在 1.窗口外的像素不能参与匹配判断. 2.在低纹理区域很容易产生错误匹配 论文的主要贡献在代价聚类上(左右图像带匹配点/区域的匹配代价计算),目标是图像内所有点都对该点传递一个support,距离该点较远的或者颜色差别很大的点传递较小的Support. 本文利用MST(最小生成树)来构建这个代价聚类的结构,根据MST结构我们知道,当把图像看做是一个四联通区域的图时,图像两点所形成边的权值我们定义为这两点灰度值的差值,这种定义下生成的MST结构正好符合我们的期望.这一…
前言 Boyer-Moore算法是一种基于后缀匹配的模式串匹配算法(简称BM算法),后缀匹配就是模式串从右到左開始比較,但模式串的移动依旧是从左到右的.在实践中.BM算法效率高于前面介绍的<KMP算法>,算法分为两个阶段:预处理阶段和搜索阶段:预处理阶段时间和空间复杂度都是是O(m+sigma),sigma是字符集大小.一般为256.在最坏的情况下算法时间复杂度是O(m*n):在最好的情况下达到O(n/m). BM算法实现 BM算法预处理过程 BM算法有两个规则分别为坏字符规则(Bad Cha…
一.BM算法介绍 BM算法(Boyer-Moore算法)是罗伯特·波义尔(Robert Boyer)和杰·摩尔(J·Moore)在1977年共同提出的.与KMP算法不同的是,BM算法是模式串P由左向右移动,而字符的比较时由右向左进行.当文本字符与模式不匹配时,则根据预先定义好的"坏字符串偏移函数"和"好后缀偏移函数"计算出偏移量.它的简化版本BMH或整个算法通常在文本编辑器中用于"搜索"和"替代"命令.该算法从最右边的字符开始…